Skip to main content
Log in

Biological damage function models for durability assessments of wood and wood-based products in building envelopes

Biologische Schadensakkumulationsmodelle zur Bestimmung der Dauerhaftigkeit von Holz und Holzwerkstoffen in Gebäudehüllen

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

A durability assessment system that links an advanced computer model for structural and hygrothermal analysis with damage functions is currently being developed. The computational system has different modules that calculate the different structural and hygrothermal responses of wall systems. Outputs of these modules are input to the module of damage function models to calculate damage, performance and service-life of building envelopes. Details of biological damage functions implemented in the damage function module of IRC’s durability assessment system are presented. The biological damage functions trace deterioration in wood materials subjected to hygrothermal loads that favor fungal growth. The developments of the models are based on recent biological experimental data from the literature. Equations to calculate various parameters in the model are presented and the application of the developed models is demonstrated using air leakage of warm and humid indoor air in a typical wood-frame construction in Ottawa.

Zusammenfassung

Derzeit wird ein System zur Beurteilung der Dauerhaftigkeit entwickelt, das ein fortschrittliches Computermodell für die statische und hygrothermische Berechnung mit Schadensfunktionen verbindet. Das Computersystem besteht aus verschiedenen Modulen, mit denen die verschiedenen statischen und hygrothermischen Eigenschaften eines Wandsystems berechnet werden. Die Ergebnisse dieser Module dienen als Eingangsgrößen für das Schadensakkumulationsmodell, mit dem die Schädigung und die Lebensdauer von Gebäudehüllen berechnet werden. Die biologischen Schadensfunktionen, die in das Schadensakkumulationsmodell des IRC Systems zur Beurteilung der Dauerhaftigkeit implementiert wurden, werden detailliert beschrieben. Die biologischen Schadensfunktionen bestimmen Schädigungen im Holzmaterial, das Pilzwachstum verursachender Belastung ausgesetzt war. Zur Entwicklung der Modelle werden aktuelle biologische Versuchsdaten aus der Literatur hergenommen. Gleichungen zur Berechnung verschiedener Parameter im Modell werden dargestellt und die Anwendung der entwickelten Modelle wird anhand der Konvektion von warmer und feuchter Innenraumluft durch eine typische Holzrahmenkonstruktion in Ottawa aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10
Fig. 11 Abb. 11

Similar content being viewed by others

References

  • Andersson MA, Nikulin M, Köljalg U, Andersson MC, Rainy F, Reijula K, Hintikka EL, Salkinoja-Salonen M (1997) Bacteria, molds, and toxins in water-damaged building materials. Appl Environ Microbiol 63(2):387–393

    PubMed  CAS  Google Scholar 

  • ASHRAE (1995) Heating, ventilating, and air-conditioning applications handbook, SI edn, Chap 3, pp 3.1–3.13

    Google Scholar 

  • Brischke C, Rapp AO (2008a) Dose-response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci Technol 42(4):507–518

    Article  CAS  Google Scholar 

  • Brischke C, Rapp AO (2008b) Influence of wood moisture content and wood temperature on fungal decay in the field: observations in different micro-climates. Wood Sci Technol 42(4):663–677

    Article  CAS  Google Scholar 

  • Brischke C, Welzbacher CR, Huckfeldt T (2008) Influence of fungal decay by different basidiomycetes on the structural integrity of Norway spruce wood. Holz Roh- Werkst 66:443–438

    Article  Google Scholar 

  • Clarke JA, Johnstone CM, Kelly NJ, McLean RC, Anderson JA, Rowan NJ, Smith JE (1999) A technique for the prediction of the conditions leading to mould growth in buildings. Build Environ J 34(4):515–521

    Article  Google Scholar 

  • Duncan CG, Lombard FF (1965) Fungi associated with principal decays in wood products in the United States. US Forest Service research paper W0-4, Department of Agriculture, Washington, DC, pp 30

  • CEN EN 252 (1989) Field test method for determining the relative protective effectiveness of wood preservatives in ground contact. European Committee for Standardization, Brussels

  • Foliente GC, Leicester RH, Wang C-H, Mackenzie C, Cole IS (2002) Durability design for wood construction. For Prod J 52(1):10–19

    Google Scholar 

  • Fugler D (1996) Molds in finished basements. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Ottawa, pp 1–14

  • Hukka A, Viitanen HA (1999) A mathematical model of mold growth in wooden material. Wood Sci Technol 33(6):475–485

    Article  CAS  Google Scholar 

  • Leicester RH, Wang C-H, Nguyen M, Foliente GC (2005) Engineering models for biological attack on timber. In: 10th international conference on durability of building materials and components, TT4-217, Lyon, France, 2005, pp 17–2

    Google Scholar 

  • Morris P (1998) Understanding biodeterioration of wood in structures. Internal report, Forintek Canada Corp, Vancouver, BC, pp 16

  • Nofal M, Kumaran MK (1999) Durability assessments of wood-frame construction using the concept of damage-functions. In: 8th international conference on durability of building materials and components, Vancouver, Canada, 1999

    Google Scholar 

  • Ojanen T, Kumaran MK (1992) Thermal performance of the exterior envelopes of buildings V. In: Proceedings of the ASHRAE/DOE/BTECC conference, Clearwater Beach, Florida, pp 491–500

    Google Scholar 

  • Ojanen T, Kumaran MK (1996) Effect of air leakage on the hygrothermal behaviour of a residential wall assembly. J Therm Insul Build Envel 19(1):215–227

    Google Scholar 

  • Schmidt EL, Hall HJ, Gertjejansen RO, Carll CG, DeGrott RC (1983) Biodeterioration and strength reduction in preservative treated aspen waferboard. For Prod J 33(11/22):45–53

    CAS  Google Scholar 

  • Sedlbauer K (2002) Prediction of mould growth by hygrothermal calculation. J Build Phys 25(4):321–336

    Article  Google Scholar 

  • Standards Australia (2003) AS 5604: Australian standard-timber-natural durability ratings. Sydney, Australia, pp 1–25

  • Viitanen H (1997a) Modeling the time factor in the development of mold fungi—the effect of critical humidity and temperature conditions on pine and spruce sapwood. Int J Biol Chem Phys Technol Wood 51(1):6–14

    CAS  Google Scholar 

  • Viitanen H (1997b) Modeling the time factor in the development of brown-rot-decay in pine and spruce sapwood—the effect of critical humidity and temperature conditions. Int J Biol Chem Phys Technol Wood 51(2):99–106

    CAS  Google Scholar 

  • Viitanen H, Bjurman J (1995) Mold growth on wood at fluctuating humidity conditions. Mater Struct J 29(1):27–46

    Google Scholar 

  • Viitanen H, Ojanen T (2007) Improved model to predict mold growth in building materials. In: The proceeding of thermal performance of the exterior envelopes of the whole buildings X international conference, paper # 162, ASHREA, pp 1–8

    Google Scholar 

  • Viitanen H, Ritschkoff AC (1991) Brown rot decay in wooden constructions: effect of temperature, humidity and moisture. Report No 222, Swedish University of Agricultural Sciences, Departments of Forest Products, pp 57

  • White JM (1995) Moldy houses: why they are & why we care. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Report No 1952070.00, Ottawa, pp 66

  • White JM (1996) Additional analysis of Wallaceburg data. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Report No 2962056.02, Ottawa, pp 36

  • Wilcox WW (1978) Review of literature on the effect of early stages of decay on wood strength. Wood Fiber 9(4):252–257

    Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology: decay and its prevention. Academic Press, San Diego, p 476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Nofal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nofal, M., Kumaran, K. Biological damage function models for durability assessments of wood and wood-based products in building envelopes. Eur. J. Wood Prod. 69, 619–631 (2011). https://doi.org/10.1007/s00107-010-0508-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0508-9

Keywords

Navigation