Skip to main content
Log in

Observation of anisotropic water movement in Pinus radiata D. Don sapwood above fiber saturation using magnetic resonance micro-imaging

  • Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Magnetic resonance micro-imaging has been used to visualise the movement of water during the drying of Pinus radiata D. Don (radiata pine) wood samples of varying annual ring orientation and dimension. The drying process has shown a strong influence of annual ring orientation for thin boards with drying deviating from the classical core-shell model. Diffusion tensor micro-imaging shows the direction of greatest restriction to diffusion being in the transverse radial direction. Similarly, anisotropic values for T2 relaxation are observed, with values obtained when the transverse face is normal to the static magnetic field being higher than in the case when the radial or tangential faces are normal to the field.

Zusammenfassung

Magnetische Resonanz-Mikrophotographie wurde angewandt, um die Wasserbewegung während des Tocknungsvorgangs in Proben von Pinus radiata D. Don mit variierender Ringausrichtung und -durchmesser sichtbar zu machen. Es hat sich gezeigt, dass der Trocknungsprozess stark von der Jahrringausrichtung bei dünnen Brettern beeinflusst ist, wobei die Trocknung von dem klassischen Kern-Schale-Modell abwich. Die Mikroaufnahme des Diffusion-Tensors zeigte die Ausrichtung größter Diffusionshemmung in transversal-radialer Richtung. Ähnlich wurden anisotropische Werte für die T2-Relaxation beobachtet, deren Werte, die erhalten wurden, wenn die transversale Fläche sich gegenüber dem statischen Magnetfeld senkrecht befand, höher waren als diejenigen, bei denen sich die radialen oder tangentialen Flächen senkrecht zum Magnetfeld verhielten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c Abb. 1a–c
Fig. 2a,b Abb. 2a,b
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

Notes

  1. Altex Coatings, 215 Oropi Rd, Tauranga, New Zealand

References

  • Avramidis S, Siau JF (1987) An investigation of the external and internal resistance to moisture diffusion in wood. Wood Sci Technol 21:249–256

    Google Scholar 

  • Balcom BJ, MacGregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW (2002) Single-point ramped imaging with T1 enhancement. J Magn Reson 123:131–134

    Google Scholar 

  • Basser PJ, Mattielo J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Google Scholar 

  • Booker RE (1991) Changes in transverse wood permeability during the drying of Dacrydium cupressium and Pinus radiata. N Z J Forest Sci 20:231–244

    Google Scholar 

  • Booker RE (2001) pers comm.

  • Bramhall G (1979) Sorption diffusion in wood. Wood Sci 12:3–13

    Google Scholar 

  • Callaghan PT (1991) Principles of Nuclear Magnetic Resonance Microscopy. 1st edn. Clarendon Press, Oxford

  • Callaghan PT (1999) Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys 62:599–668

    Google Scholar 

  • Cown DJ, Parker ML (1978) Comparison of annual ring density profiles in hardwoods and softwoods by X-ray densitometry. Can J Forest Res 8:442–449

    Google Scholar 

  • Eccles CD, Clark CJ, Codd SL, Dykstra R (1998) Construction of an MRI system for horticultural and materials science research. In: Proceedings of the Fifth Electronics New Zealand Conference, University of Otago, Dunedin, pp 45–50

  • Gil AM, Lopes MH, Neto CP, Callaghan PT (2000) An NMR microscopy study of water absorption in cork. J Mater Sci 35:1891–1900

    Google Scholar 

  • Gu H-M, Zink-Sharp A (1999) Measurement of moisture gradients during kiln-drying. Forest Prod J 49:77–86

    Google Scholar 

  • Hall LD, Rajanayagam V (1986) Evaluation of the distribution of water in wood by use of three dimensional proton NMR volume imaging. Wood Sci Technol 20:329–333

    Google Scholar 

  • Hall LD, Rajanayagam V, Stewart WA, Steiner PR (1986) Magnetic resonance imaging of wood. Can J Forest Res 16:423–426

    Google Scholar 

  • Lindberg O (1992) Medical CT-scanners for non-destructive wood density and moisture content measurements. PhD thesis, Luleå University of Technology, Sweden

  • MacMillan MB, Schneider MH, Sharp AR, Balcom BJ (2002) Magnetic resonance imaging of water concentration in low moisture content wood. Wood Fiber Sci 34:276–286

    Google Scholar 

  • Menon RS, MacKay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci 33:1141–1155

    Google Scholar 

  • Menon RS, MacKay AL, Flibotte S, Hailey JRT (1989) Quantitative separation of NMR images of water in wood on the basis of T2. J Magn Reson 82:205–210

    Google Scholar 

  • Merboldt KD, Hänicke W, Frahm J (1987) NMR imaging of restricted diffusion. Ber Bunsengesells Phys Chemi 91:1124–1126

    Google Scholar 

  • Moffat BA, Pope JM (2002) Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging. Exp Eye Res 74:677–687

    Google Scholar 

  • Olson JR (1986) Measurement of growth ring orientation in lumber. Forest Prod J 36:23–24

    Google Scholar 

  • Olson JR, Chang SJ, Wang PC (1990) Nuclear magnetic resonance imaging: a noninvasive analysis of moisture distributions in white oak lumber. Can J Forest Res 20:586–591

    Google Scholar 

  • Pang S (1996) Moisture content gradient in a softwood board during drying: simulation from a 2-D model and measurement. Wood Sci Technol 30:165–178

    Google Scholar 

  • Pang S, Wiberg P (1998) Model predicted and CT scanned moisture distribution in a Pinus radiata board during drying. Holz Roh- Werkstoff 56:9-14

    Google Scholar 

  • Riggin MT, Sharp AR, Kaiser R (1979) Transverse relaxation of water in wood. J Appl Polym Sci 23:3147–3154

    Google Scholar 

  • Rosenkilde A, Jesper A (1997) Measurement and evaluation of moisture transport coefficients during drying of wood. Holzforsch 51:372–380

    Google Scholar 

  • Rosenkilde A, Glover P (2002) High resolution measurement of the surface layer moisture content during drying of wood using a novel magnetic resonance imaging technique. Holzforsch 56:312–317

    Google Scholar 

  • Samuelsson A, Arfvidsson J (1994) Measurement and calculation of moisture contents during drying. Proceedings of the 4th IUFRO International Wood Drying Conference, Rotorua, New Zealand, pp 79–86

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurement: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–92

    Google Scholar 

  • Xia Y, Sarafis V, Campbel EO, Callaghan PT (1993) Non invasive imaging of water flow in plants by NMR microscopy. Protoplasma 173:170–176

    Google Scholar 

  • Xia Y (1998) Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14-μm resolution. Magn Reson Med 39:941–949

    Google Scholar 

  • Xia Y (2000) Heterogeneity of cartilage laminae in MR imaging. J Magn Reson Imag 11:686–693

    Google Scholar 

  • Xu Y, Araujo CD, MacKay AL, Whittall KP (1996) Proton spin-lattice relaxation in wood—T1 related to local specific gravity using a fast-exchange model. J Magn Reson 110:55–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Meder.

Additional information

The authors would like to thank Drs Rolf Booker and Shusheng Pang for valuable discussions during the course of this study. The work was conducted with financial assistance from the New Zealand Foundation for Research, Science and Technolgy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meder, R., Codd, S.L., Franich, R.A. et al. Observation of anisotropic water movement in Pinus radiata D. Don sapwood above fiber saturation using magnetic resonance micro-imaging. Holz Roh Werkst 61, 251–256 (2003). https://doi.org/10.1007/s00107-003-0400-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-003-0400-y

Keywords

Navigation