Skip to main content
Log in

Wood nails to fix softwoods: characterization of structural deformation and lignin modification

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Softwoods can be nailed with high density solid wood like Santos Rosewood (Machaerium scleroxylon) or nails made of densified laminated beech wood composite by hammering or shooting, for example with air nail guns, without pre-drilling. Shooting with about 30 m/s causes friction between nail surface and softwood matrix, heating up the interface to temperatures high enough to soften lignin. Re-condensation of softened lignin causes wood welding which doubles pull out strength in comparison to wood nails fixed without wood welding. Changes in lignin UV-absorption within the single cell wall layer and deformation of main anatomical features of spruce wood tissue are characterized by scanning UV microspectrophotometry (UMSP) whereas structural deformations of spruce wood tissue are revealed by X-ray micro-computed tomography (µ-CT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersons B, Noldt G, Koch G, Andersone I, Feldmane AM, Biziks V, Irbe I, Grnins J (2016) Scanning UV microspectrophotometry as a tool to study the changes of lignin in hydrothermally modified wood. Holzforschung 70(3):215–221

    Article  CAS  Google Scholar 

  • Barcikowski S, Koch G, Odermatt J (2006) Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites. Holz Roh Werkst 64:94–103

    Article  CAS  Google Scholar 

  • Boonstra MJ, Tjeerdsma BF (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64:204–211

    Article  CAS  Google Scholar 

  • de Samsonow in Watermael A (1934) Patent DE 631126

  • Delmotte L, Mansouri HR, Omrani P, Pizzi A (2009) Influence of wood welding frequency on wood constituents chemical modification. J Adhes Sci Technol 23:1271–1279

    Article  CAS  Google Scholar 

  • Evans PD, Lube V, Averdunk H, Limaye A, Turner M, Kingston A, Senden TJ (2015) Visualizing the microdistribution of zinc borate in oriented strand board using X-ray microcomputed tomography and SEM-EDX”. J Compos. https://doi.org/10.1155/2015/630905

    Google Scholar 

  • Fergus BJ, Goring DAI (1970) The location of guaiacyland syringyl lignins in birch xylem tissue. Holzforschung 24:113–124

    Article  CAS  Google Scholar 

  • Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley Interscience, New York, pp 241–266

    Google Scholar 

  • Herzog T, Volz M (1996) Teil 2 Grundlagen: Baustoff. In: Natterer J, Herzog T, Volz M (eds) Holzbau Atlas Zwei, 2nd edn. Arbeitsgemeinschaft Holz e.V., Düsseldorf und Institut für Internationale Architektur-Dokumentation GmbH, München, p 37

  • Jamnitzky J (2016) Steel-free adhesively bonded construction for testing of electronic equipment by the German Army. 22. Int. Holzbau-Forum (IHF), Garmisch-Partenkirchen, Germany, pp 131–140

  • Kleist G, Schmitt U (1999) Evidence of accessory compounds in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh Werkst 57:93–95

    Article  CAS  Google Scholar 

  • Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567

    Article  CAS  Google Scholar 

  • Koch G, Schmitt U (2013) Topochemical and electron microscopic analyses on the lignification of individual cell wall layers during wood formation and secondary changes. In: Fromm J (Hrsg): Cellular Aspects of Wood Formation, Plant Cell Monographs 20, Springer, Berlin

    Chapter  Google Scholar 

  • Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Wood Fibre cell walls: methods to study their formation, structure and properties. Eds. U. Schmitt et. al. Swedish University of Agricultural Sciences, Uppsala, pp 119–130

    Google Scholar 

  • Korte H (2017) Holz ersetzt Stahl?—die Neuerfindung des Nagels (Wood replaces steel?—the reinvention of the nail) (In German). Holz-Zentralblatt 20:470

    Google Scholar 

  • Lademann O (2017) Mechanische Eigenschaften des Holznagels Beck “LignoLoc” (Mechanical properties of the wood nail Beck “LignoLoc”) (In German). https://www.beck-lignoloc.com/fileadmin/user_upload/LignoLoc_Pruefbericht_ENV_12038.pdf. Accessed 08 Aug 2017

  • Mahnert KC, Adamopoulos S, Koch G, Militz G (2013) Topochemistry of heat-treated and N-methylol melamine modified wood of Koto (Pterygota macrocarpa K. Schum.) and Limba (Terminalia superba Engl. et Diels). Holzforschung 67:137–146

    Article  CAS  Google Scholar 

  • Nimz H (1973) Chemistry of potential chromophoric groups in beech lignin. Tappi 56:124–126

    CAS  Google Scholar 

  • Oehm WN, Powell G, (1920) Patent US 1412626

  • Pizzi A, Despres A, Mansouri HR, Leban J-M, Rigolet S (2006) Wood joints by through-dowel rotation welding: microstructure, 13C-NMR and water resistance. J Adhes Sci Technol 20(5):427–436

    Article  CAS  Google Scholar 

  • Ryuichi I, Tadashi O, Takahisa N, Koji A (2014) Changes in wood temperature under high-speed friction. J Wood Sci 60:313–320

    Article  Google Scholar 

  • Scheiding W (2017) Prüfbericht Auftrags-Nr.:2216072 (Test report No. 2216072) (In German). https://www.beck-lignoloc.com/fileadmin/user_upload/LignoLoc_VHT_Bericht.pdf. Accessed 08 Aug 2017

  • Settgast J, Krauß R, Wagner R, Munro P, Wildung D, Hauptmann GR, Liepe J, Fischer R (1980) Tutanchamun. Verlag Philipp von Zabern, Mainz, Germany

    Google Scholar 

  • Siemers S, Korte H (2016) Patent WO 2016180900A1

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Stamm B, Windeisen E, Natterer J, Wegener G (2006) Chemical investigations on the thermal behaviour of wood during friction welding. Wood Sci Technol 40:615–627

    Article  CAS  Google Scholar 

  • Stäuble H (2010) Steinzeit jenseits der Steine (Stone age beyond stones) (In German). SdW 3:62–69

    Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekeley P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvements. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Tucker PS, Showers N (1998) Patent US 6168362B1

  • Ucar G, Meier D, Faix O, Wegener G (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequioadendron giganteum (Lindl.) wood and MWLs isolated hereof. Holz Roh Werkst 63:57–63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Korte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korte, H., Koch, G., Krause, K.C. et al. Wood nails to fix softwoods: characterization of structural deformation and lignin modification. Eur. J. Wood Prod. 76, 979–988 (2018). https://doi.org/10.1007/s00107-018-1288-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1288-x

Navigation