Skip to main content
Log in

Prediction of the off-axis stress-strain relation of wood under compression loading

Spannungs-Dehnungs-Diagramm von Holz bei Druckbeanspruchung unter einem Winkel zwischen Kraft- und Faserrichtung

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Uniaxial compression tests were conducted using specimens of agathis (Agathis sp.) and katsura (Cercidiphyllum japonicum Sieb. et Zucc.) with various values of off-axis angle, defined as the angle between the grain axis and the axis along the loading direction. The obtained stress-strain relation was regressed into Ramberg–Osgood’s equation, and it was predicted by approximating the relationship between the parameters contained in the regressed equation and off-axis angle into Hankinson’s formula. The comparisons between the stress-strain relations obtained by the experiment and prediction revealed that the off-axis compression stress-strain relation can be predicted effectively using the relations in the orthotropic axes.

Zusammenfassung

Durchgeführt wurden einachsige Druckversuche an Agathis- (Agathis sp.) und Katsuraproben (Cercidiphyllum japonicum Sieb. et Zucc.) bei verschiedenen Winkeln zwischen Kraft- und Faserrichtung. Zur Bestimmung des Spannungs-Dehnungs-Diagramms wurden die Parameter der Ramberg–Osgood-Gleichung zunächst mittels einer Regressionsrechnung bestimmt und dann unter Verwendung der Hankinson-Gleichung mit dem Winkel zwischen Kraft- und Faserrichtung in Beziehung gesetzt. Der Vergleich zwischen den experimentell bestimmten und den berechneten Spannungs-Dehnungs-Diagrammen ergab, dass eine Spannungs-Dehnungs-Kurve bei Druckbeanspruchung bei unterschiedlichen Winkeln zwischen Kraft- und Faserrichtung sehr gut aus den Ergebnissen in den orthotropen Achsen, d.h. in Faserrichtung und quer zur Faserrichtung, bestimmt werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkenazi EK (1959) On the problem of strength anisotropy on construction materials. Zh Tekh Fiz 29:374–380 (in russian)

    Google Scholar 

  2. Cowin SC (1979) On the strength anisotropy of bone and wood. J Appl Mech Trans ASME 46:832–838

    Google Scholar 

  3. Goodman JR, Bodig J (1971) Orthotropic strength of wood in compression. Wood Sci 4:83–94

    Google Scholar 

  4. Hankinson RL (1921) Investigation of crushing strength of spruce at varying angles of grain. Air Service Information Circular, 3 (259), Material Section Report No. 130

  5. Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz Roh- Werkst 58:91–95

    Article  Google Scholar 

  6. Jenkin CF (1920) Strength in directions inclined to the grain. Report on materials of construction used in aircraft and aircraft engines. His Majesty Stationary Office, London, 102–104

  7. Kim KY (1986) A note on the Hankinson formula. Wood Fiber Sci 18:345–348

    Google Scholar 

  8. Kon T (1948) On the law of variation of the modulus of elasticity for bending in wooden beams. Bull Hokkaido Univ Dept Eng 1:157–166

    Google Scholar 

  9. Kitahara K (1956) Experimental characterization of physical and machining properties of wood. Sangyo Tosho, Tokyo, 104

  10. Lang LM, Bejo L, Szlai J, Kovacs Z, Anderson RB (2002) Orthotropic strength and elasticity of hardwoods in relation to composite manufacture II. Orthotropy of compression strength and elasticity. Wood Fiber Sci 34:350–365

    CAS  Google Scholar 

  11. Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden Day, San Francisco, 104

  12. Liu JY (1984) Evaluation of the tensor polynomial strength theory for wood. J Compos Mater 18:216–226

    Article  Google Scholar 

  13. Liu JY (2002) Analysis of off-axis tension test of wood specimens. Wood Fiber Sci 34:205–211

    CAS  Google Scholar 

  14. Mishiro A (1996) Effect of grain angle and ring angles on ultrasonic velocity in wood. Mokuzai Gakkaishi 42:211–215

    CAS  Google Scholar 

  15. Osgood WR (1946) Stress-strain formulas. J Aero Sci 13:45–48

    Google Scholar 

  16. Radcliffe BM (1965) A theoretical evaluation of Hankinson formula for modulus of elasticity of wood at an angle to the grain. Quart Bull Michigan Agr Exp Sta 48:286–295

    Google Scholar 

  17. Ramberg W, Osgood WR (1943) Description of stress-strain curves by three parameters. NACA, TN-902

  18. Reiterer A, Stanzl-Tschegg SE (2001) Compressive behavior of softwood under uniaxial loading at different orientations to the grain. Mech Mater 33:705–715

    Article  Google Scholar 

  19. Yoshihara H, Ohta M (1991) A failure criterion which enables the prediction of the failing direction for orthotropic materials. Mokuzai Gakkaishi 37:511–516

    Google Scholar 

  20. Yoshihara H, Ohta M (1993) Stress-strain relationship of wood in the plastic region I. Examination of the applicability of plasticity theories. Mokuzai Gakkaishi 38:759–763

    Google Scholar 

  21. Yoshihara H, Ohta M (1994) Stress-strain relationship of wood in the plastic region II. Formulation of the equivalent stress-equivalent plastic strain relationship. Mokuzai Gakkaishi 40:263–267

    Google Scholar 

  22. Yoshihara H, Ohta M (2000) Estimation of the shear strength of wood by uniaxial-tension tests of off-axis specimens. J Wood Sci 46:159–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yoshihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshihara, H. Prediction of the off-axis stress-strain relation of wood under compression loading . Eur. J. Wood Prod. 67, 183–188 (2009). https://doi.org/10.1007/s00107-009-0320-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0320-6

Keywords

Navigation