Skip to main content

Advertisement

Log in

A possible role for ghrelin, leptin, brain-derived neurotrophic factor and docosahexaenoic acid in reducing the quality of life of coeliac disease patients following a gluten-free diet

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut–brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator.

Methods

Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed.

Results

Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334).

Conclusions

Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gujral N, Freeman HJ, Thomson AB (2012) Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol (WJG) 18:6036–6059. doi:10.3748/wjg.v18.i42.6036

    Article  Google Scholar 

  2. Pascual V, Dieli-Crimi R, Lopez-Palacios N, Bodas A, Medrano LM, Nunez C (2014) Inflammatory bowel disease and celiac disease: overlaps and differences. World J Gastroenterol (WJG) 20:4846–4856. doi:10.3748/wjg.v20.i17.4846

    Article  Google Scholar 

  3. Smith DF, Gerdes LU (2012) Meta-analysis on anxiety and depression in adult celiac disease. Acta Psychiatr Scand 125:189–193. doi:10.1111/j.1600-0447.2011.01795.x

    Article  CAS  Google Scholar 

  4. Sainsbury K, Mullan B, Sharpe L (2013) Reduced quality of life in coeliac disease is more strongly associated with depression than gastrointestinal symptoms. J Psychosom Res 75:135–141

    Article  Google Scholar 

  5. Karwautz A, Wagner G, Berger G, Sinnreich U, Grylli V, Huber W-D (2008) Eating pathology in adolescents with celiac disease. Psychosomatics 49:399–406

    Article  Google Scholar 

  6. Barratt SM, Leeds JS, Sanders DS (2011) Quality of life in Coeliac disease is determined by perceived degree of difficulty adhering to a gluten-free diet, not the level of dietary adherence ultimately achieved. J Gastrointestin Liver Dis 20:241–245

    Google Scholar 

  7. Samasca G, Sur G, Lupan I, Deleanu D (2014) Gluten-free diet and quality of life in celiac disease. Gastroenterol Hepatol Bed Bench 7:139–143

    Google Scholar 

  8. Casellas F, Rodrigo L, Lucendo AJ, Fernandez-Banares F, Molina-Infante J, Vivas S, Rosinach M, Duenas C, Lopez-Vivancos J (2015) Benefit on health-related quality of life of adherence to gluten-free diet in adult patients with celiac disease. Rev Esp Enferm Dig 107:196–201

    Google Scholar 

  9. Nachman F, del Campo MP, Gonzalez A, Corzo L, Vazquez H, Sfoggia C, Smecuol E, Sanchez MIP, Niveloni S, Sugai E, Maurino E, Bai JC (2010) Long-term deterioration of quality of life in adult patients with celiac disease is associated with treatment noncompliance. Dig Liver Dis 42:685–691

    Article  Google Scholar 

  10. Hallert C, Granno C, Hulten S, Midhagen G, Strom M, Svensson H, Valdimarsson T (2002) Living with coeliac disease: controlled study of the burden of illness. Scand J Gastroenterol 37:39–42

    Article  CAS  Google Scholar 

  11. Usai P, Manca R, Cuomo R, Lai MA, Boi MF (2007) Effect of gluten-free diet and co-morbidity of irritable bowel syndrome-type symptoms on health-related quality of life in adult coeliac patients. Dig Liver Dis 39:824–828. doi:10.1016/j.dld.2007.05.017

    Article  CAS  Google Scholar 

  12. Papastamataki M, Papassotiriou I, Bartzeliotou A, Vazeou A, Roma E, Chrousos GP, Kanaka-Gantenbein C (2014) Incretins, amylin and other gut-brain axis hormones in children with coeliac disease. Eur J Clin Invest 44:74–82. doi:10.1111/eci.12193

    Article  CAS  Google Scholar 

  13. Riezzo G, Ferreri C, Orlando A, Martulli M, D’Attoma B, Russo F (2014) Lipidomic analysis of fatty acids in erythrocytes of coeliac patients before and after a gluten-free diet intervention: a comparison with healthy subjects. Br J Nutr 112:1787–1796. doi:10.1017/S0007114514002815

    Article  CAS  Google Scholar 

  14. Miyazawa D, Yasui Y, Yamada K, Ohara N, Okuyama H (2010) Regional differences of the mouse brain in response to an alpha-linolenic acid-restricted diet: neurotrophin content and protein kinase activity. Life Sci 87:490–494

    Article  CAS  Google Scholar 

  15. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709

    Article  CAS  Google Scholar 

  16. Spencer SJ, Xu L, Clarke MA, Lemus M, Reichenbach A, Geenen B, Kozicz T, Andrews ZB (2012) Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biol Psychiatry 72:457–465. doi:10.1016/j.biopsych.2012.03.010

    Article  CAS  Google Scholar 

  17. Diz-Chaves Y (2011) Ghrelin, appetite regulation, and food reward: interaction with chronic stress. Int J Pept 2011:898450. doi:10.1155/2011/898450

    Article  Google Scholar 

  18. Wittekind DA, Kluge M (2015) Ghrelin in psychiatric disorders—a review. Psychoneuroendocrinology 52:176–194. doi:10.1016/j.psyneuen.2014.11.013

    Article  CAS  Google Scholar 

  19. Friedman JM (2002) The function of leptin in nutrition, weight, and physiology. Nutr Rev 60:S1–S14 (discussion S68–S84, 85-17)

    Article  Google Scholar 

  20. Linkov F, Burke LE, Komaroff M, Edwards RP, Lokshin A, Styn MA, Tseytlin E, Freese KE, Bovbjerg DH (2014) An exploratory investigation of links between changes in adipokines and quality of life in individuals undergoing weight loss interventions: possible implications for cancer research. Gynecol Oncol 133:67–72

    Article  CAS  Google Scholar 

  21. Drewnowski A, Evans WJ (2001) Nutrition, physical activity, and quality of life in older adults: summary. J Gerontol Ser A Biol Sci Med Sci 56(2):89–94

    Article  Google Scholar 

  22. Farr OM, Tsoukas MA, Mantzoros CS (2015) Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 64:114–130

    Article  CAS  Google Scholar 

  23. Lu X-Y (2007) The leptin hypothesis of depression: a potential link between mood disorders and obesity? Curr Opin Pharmacol 7:648–652

    Article  CAS  Google Scholar 

  24. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  Google Scholar 

  25. Pan A, Keum N, Okereke OI, Sun Q, Kivimaki M, Rubin RR, Hu FB (2012) Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes Care 35:1171–1180

    Article  Google Scholar 

  26. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264

    Article  CAS  Google Scholar 

  27. Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 64:341–357

    Article  CAS  Google Scholar 

  28. Hong C-J, Liou Y-J, Tsai S-J (2011) Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull 86:287–297

    Article  CAS  Google Scholar 

  29. Zou Y-F, Wang Y, Liu P, Feng X-L, Wang B-Y, Zang T-H, Yu X, Wei J, Liu Z-C, Liu Y, Tao M, Li H-C, Li K-Q, Hu J, Li M, Zhang K-R, Ye D-Q, Xu X-P (2010) Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol 25:145–152

    Article  CAS  Google Scholar 

  30. Chen C, Bazan NG (2005) Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat 77:65–76

    Article  CAS  Google Scholar 

  31. Boneva NB, Yamashima T (2012) New insights into “GPR40-CREB interaction in adult neurogenesis” specific for primates. Hippocampus 22:896–905

    Article  CAS  Google Scholar 

  32. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  Google Scholar 

  33. Ferreira CF, Bernardi JR, Bosa VL, Schuch I, Goldani MZ, Kapczinski F, Salum GA, Dalmaz C, Manfro GG, Silveira PP (2014) Correlation between n-3 polyunsaturated fatty acids consumption and BDNF peripheral levels in adolescents. Lipids Health Dis 13:44

    Article  Google Scholar 

  34. Zingone F, Iavarone A, Tortora R, Imperatore N, Pellegrini L, Russo T, Dorn SD, Ciacci C (2013) The Italian translation of the celiac disease-specific quality of life scale in celiac patients on gluten free diet. Dig Liver Dis 45:115–118

    Article  Google Scholar 

  35. Schmulson M, Lee OY, Chang L, Naliboff B, Mayer EA (1999) Symptom differences in moderate to severe IBS patients based on predominant bowel habit. Am J Gastroenterol 94:2929–2935. doi:10.1111/j.1572-0241.1999.01440.x

    Article  CAS  Google Scholar 

  36. Svedlund J, Sjodin I, Dotevall G (1988) GSRS—a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci 33:129–134

    Article  CAS  Google Scholar 

  37. El-Salhy M, Hatlebakk JG, Gilja OH, Hausken T (2015) The relation between celiac disease, nonceliac gluten sensitivity and irritable bowel syndrome. Nutr J 14:92

    Article  Google Scholar 

  38. Antonioli DA (2003) Celiac disease: a progress report. Mod Pathol 16:342–346

    Article  Google Scholar 

  39. Russo F, Chimienti G, Clemente C, D’Attoma B, Linsalata M, Orlando A, De Carne M, Cariola F, Semeraro FP, Pepe G, Riezzo G (2013) Adipokine profile in celiac patients: differences in comparison with patients suffering from diarrhea-predominant IBS and healthy subjects. Scand J Gastroenterol 48:1377–1385. doi:10.3109/00365521.2013.845907

    Article  CAS  Google Scholar 

  40. Gibert A, Espadaler M, Angel Canela M, Sanchez A, Vaque C, Rafecas M (2006) Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200 p.p.m.? Eur J Gastroenterol Hepatol 18:1187–1195

    Article  CAS  Google Scholar 

  41. Chen S-P, Fuh J-L, Wang S-J, Tsai S-J, Hong C-J, Yang AC (2011) Brain-derived neurotrophic factor gene Val66Met polymorphism modulates reversible cerebral vasoconstriction syndromes. PLoS ONE 6:e18024

    Article  CAS  Google Scholar 

  42. Hallert C, Astrom J, Sedvall G (1982) Psychic disturbances in adult coeliac disease. III. Reduced central monoamine metabolism and signs of depression. Scand J Gastroenterol 17:25–28

    Article  CAS  Google Scholar 

  43. Addolorato G, Di Giuda D, De Rossi G, Valenza V, Domenicali M, Caputo F, Gasbarrini A, Capristo E, Gasbarrini G (2004) Regional cerebral hypoperfusion in patients with celiac disease. Am J Med 116:312–317

    Article  Google Scholar 

  44. Ozsoy S, Besirli A, Abdulrezzak U, Basturk M (2014) Serum ghrelin and leptin levels in patients with depression and the effects of treatment. Psychiatry Investig 11:167–172

    Article  CAS  Google Scholar 

  45. Cheung CK, Wu JC-Y (2013) Role of ghrelin in the pathophysiology of gastrointestinal disease. Gut Liver 7:505–512

    Article  CAS  Google Scholar 

  46. Carvalho AF, Rocha DQC, McIntyre RS, Mesquita LM, Kohler CA, Hyphantis TN, Sales PMG, Machado-Vieira R, Berk M (2014) Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res 59:28–37

    Article  Google Scholar 

  47. Karmiris K, Koutroubakis IE, Kouroumalis EA (2008) Leptin, adiponectin, resistin, and ghrelin–implications for inflammatory bowel disease. Mol Nutr Food Res 52:855–866

    Article  CAS  Google Scholar 

  48. Yu Y-B, Zuo X-L, Zhao Q-J, Chen F-X, Yang J, Dong Y-Y, Wang P, Li Y-Q (2012) Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut 61:685–694

    Article  CAS  Google Scholar 

  49. Brown GW, Craig TK, Harris TO, Herbert J, Hodgson K, Tansey KE, Uher R (2014) Functional polymorphism in the brain-derived neurotrophic factor gene interacts with stressful life events but not childhood maltreatment in the etiology of depression. Depress Anxiety 31:326–334. doi:10.1002/da.22221

    Article  Google Scholar 

  50. Solakivi T, Kaukinen K, Kunnas T, Lehtimaki T, Maki M, Nikkari ST (2009) Serum fatty acid profile in celiac disease patients before and after a gluten-free diet. Scand J Gastroenterol 44:826–830

    Article  CAS  Google Scholar 

  51. van Hees NJM, Giltay EJ, Geleijnse JM, Janssen N, van der Does W (2014) DHA serum levels were significantly higher in celiac disease patients compared to healthy controls and were unrelated to depression. PLoS ONE 9:e97778

    Article  Google Scholar 

  52. Balanza-Martinez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabares-Seisdedos R, Kapczinski F (2011) Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 11:1029–1047

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Benedetta D’Attoma and Dr. Manuela Martulli (IRCCS “Saverio de Bellis”) for their precious technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Russo.

Ethics declarations

Conflict of interest

CF discloses her position as partner of Lipinutragen srl. The other authors declare that they have no competing interests.

Additional information

Francesco Russo and Guglielmina Chimienti have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, F., Chimienti, G., Clemente, C. et al. A possible role for ghrelin, leptin, brain-derived neurotrophic factor and docosahexaenoic acid in reducing the quality of life of coeliac disease patients following a gluten-free diet. Eur J Nutr 56, 807–818 (2017). https://doi.org/10.1007/s00394-015-1128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1128-2

Keywords

Navigation