Skip to main content
Log in

Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Summer water stress is the main limiting factor for Pinus pinaster growth under Mediterranean climate, but no information on limiting physiographic and climatic factors under Atlantic conditions is available for this species. We hypothesize that water availability during the active period limits P. pinaster growth, with stands nearby the Atlantic–Mediterranean boundary being more sensitive to summer drought stress. We analyzed the inter- and intra-annual climatic response of this species at ten monospecific stands in a transitional area between the Atlantic and Mediterranean biogeographical regions in Galicia, NW Spain. Mean sensitivity of radial growth consistently decreased with increasing elevation, and growth variation was quite similar for the earlywood, latewood or total ring widths, suggesting a strong intra-annual coherency of radial growth. Growth patterns were site dependent and geographically structured, with three groups of stands showing different climatic responses. As expected for sites suffering from summer drought stress, water availability enhances growth in western and southern Galicia, showing negative responses to maximum temperatures and positive to water availability. In northern Galicia, away from the Atlantic-Mediterranean boundary, water surplus in the rainy seasons negatively influenced growth. This was probably due to the combined effects of seasonal water-logging stress and the reduction of solar radiation associated with cloudiness, which would limit photosynthetic rates in winter and spring. Local variations of water availability strongly controlled the physiological processes that determine growth dynamics of P. pinaster in NW Spain, contributing to its geographical structure and contrasting sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559

    Article  Google Scholar 

  • Álvarez González JG, Ruiz González AD, Rodríguez Soalleiro R, Barrio Anta M (2005) Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain). Ann For Sci 62:115–127

    Article  Google Scholar 

  • Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65:506

    Article  Google Scholar 

  • Briffa K, Jones PD (1990) Basic chronology statistics and assessment. In: Cook E, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 137–152

    Google Scholar 

  • Bucci G, González-Martínez SC, Le Provost G, Plomion C, Ribeiro MM, Sebastiani F, Alía R, Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol Ecol 16:2137–2153

    Article  PubMed  CAS  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083

    Article  Google Scholar 

  • Case MJ, Peterson DL (2005) Fine-scale variability in growth–climate relationships of Douglas-fir, North Cascade Range, Washington. Can J For Res 35:2743–2755

    Article  Google Scholar 

  • Chambel MR, Climent J, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97

    Article  Google Scholar 

  • Chhin S, Hogg EH, Lieffers VJ, Huang S (2008) Influences of climate on the radial growth of lodgepole pine in Alberta. Botany 86:167–178

    Article  Google Scholar 

  • Cook ER, Holmes RL (1996) Guide for computer program ARSTAN. In: Grissino-Mayer HD, Holmes RL, Fritts HC (eds) The international tree-ring data bank program library Version 2.0 user’s manual. Laboratory of Tree-Ring Research, University of Arizona, Tucson, pp 75–87

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • Cook ER, Glitzenstein JS, Krusic PJ, Harcombe PA (2001) Identifying functional groups of trees in West Gulf Coast forests (USA): a tree-ring approach. Ecol Appl 11:883–903

    Article  Google Scholar 

  • Correia I, Almeida MH, Aguiar A, Alía R, Soares David T, Santos Pereira J (2008) Variations in growth, survival and carbon isotope composition (δ13C) among Pinus pinaster populations of different geographic origins. Tree Physiol 28:1545–1552

    PubMed  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • De la Mata R, Zas R (2010a) Transferring Atlantic maritime pine improved material to a region with marked Mediterranean influence in inland NW Spain: a likelihood-based approach on spatially adjusted field data. Eur J For Res 129:645–658

    Article  Google Scholar 

  • De la Mata R, Zas R (2010b) Performance of maritime pine Spanish Mediterranean provenances at young ages in a transitional region between Atlantic and Mediterranean climates in NW Spain. Silvae Genet 59:8–17

    Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manage 173:63–78

    Article  Google Scholar 

  • Fekedulegn D, Hicks RR, Colbert JJ (2003) Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For Ecol Manage 177:409–425

    Article  Google Scholar 

  • Figueiral I (1995) Charcoal analysis and the history of Pinus pinaster (cluster pine) in Portugal. Rev Palaeobot Palynol 89:441–454

    Article  Google Scholar 

  • Ford CR, Brooks JR (2002) Detecting forest stress and decline in response to increasing river flow in southwest Florida, USA. For Ecol Manage 160:45–64

    Article  Google Scholar 

  • Fritts HC (2001) Tree rings and climate. Blackburn Press, Caldwell

    Google Scholar 

  • Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Nat Acad Sci USA 100:572–576

    Article  PubMed  CAS  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221

    Google Scholar 

  • Guitián Ojea F (1974) Itinerarios de los suelos en Galicia. Monografías de la Universidad de Santiago de Compostela, 26. Secretariado de Publicaciones de la Universidad de Santiago, Santiago de Compostela, Spain

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Leal S, Emaus D, Grabner M, Wimmer R, Cherubini P (2008) Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can J For Res 38:744–759

    Article  Google Scholar 

  • Lebourgeois F (2000) Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann For Sci 57:155–164

    Article  Google Scholar 

  • Legendre P, Legendre I (1998) Numerical ecology, 2nd English edn. Elsevier, Amsterdam

  • Leonelli G, Pelfini M, Battipaglia G, Cherubini P (2009) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim Change 96:185–201

    Article  Google Scholar 

  • Littell JS, Peterson DL, Tjoelker M (2008) Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol Monogr 78:349–368

    Article  Google Scholar 

  • Lo Y-H, Blanco JA, Seely B, Welham C, Kimmins JP (2010) Relationships between climate and tree radial growth in interior British Columbia, Canada. For Ecol Manage 259:932–942

    Article  Google Scholar 

  • Loehle C, LeBlanc D (1996) Model-based assessments of climate change effects on forests: a critical review. Ecol Model 90:1–31

    Article  CAS  Google Scholar 

  • Mäkinen H, Nöjd P, Kahle H-P, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage 174:233–249

    Google Scholar 

  • Martín-Benito D, Del Río M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean Mountains. Ann For Sci 67:401

    Article  Google Scholar 

  • Martínez Cortizas A, Castillo Rodríguez F, Pérez Alberti A (1994) Factores que influyen en la precipitación y el balance de agua en Galicia. Boletín de la Asociación de Geógrafos Españoles 18:79–96

    Google Scholar 

  • Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256

    Article  Google Scholar 

  • Medlyn BE, Loustau D, Delzon S (2002) Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant Cell Environ 25:1155–1165

    Article  CAS  Google Scholar 

  • Parker AJ, Parker KC, Faust TD, Fuller MM (2001) The effects of climatic variability on radial growth of two varieties of sand pine (Pinus clausa) in Florida, USA. Ann For Sci 58:333–350

    Article  Google Scholar 

  • Peterson DW, Peterson DL (2001) Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82:3330–3345

    Article  Google Scholar 

  • Rathgeber CB, Misson L, Nicault A, Guiot J (2005) Bioclimatic model of tree radial growth: application to the French Mediterranean Aleppo pine forests. Trees 19:162–176

    Article  Google Scholar 

  • Rivas Martínez S, Loidi Arregui J (1999) Biogeography of the Iberian Peninsula. Itinera Geobotanica 13:49–67

    Google Scholar 

  • Rozas V, Lamas S, García-González I (2009) Differential tree-growth responses to local and large-scale climatic variation in two Pinus and two Quercus species in northwest Spain. Écoscience 16:299–310

    Article  Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. The University of Arizona Press, Tucson

    Google Scholar 

  • Splechtna BE, Dobry J, Klinka K (2000) Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Ann For Sci 57:89–100

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (Version 4). Center for Biometry Wageningen and Microcomputer Power, Ithaca

    Google Scholar 

  • Thornthwaite DW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Tognetti R, Michelozzi M, Laureti M, Brugnoli E, Giannini R (2000) Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Can J For Res 30:1682–1690

    Article  CAS  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265

    Article  Google Scholar 

  • Watson E, Luckman BH (2002) The dendroclimatic signal in Douglas-fir and ponderosa pine tree-ring chronologies from the southern Canadian Cordillera. Can J For Res 32:1858–1874

    Article  Google Scholar 

  • Zas R, Merlo E, Fernández-López J (2004) Genotype × environment interaction in Maritime pine families in Galicia, Northwest Spain. Silvae Genet 53:175–182

    Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Bermejo, A. González, S. Lamas, P. Manso, B. Rodríguez-Morales and A. Soliño for field and laboratory assistance. The personnel from Dirección Xeral de Montes, Forest Districts and Islas Atlánticas National Park facilitated site accession. V. Rozas benefited from research contracts by INIA-Xunta de Galicia and CSIC. This research was funded by Dirección Xeral de Investigación, Desenvolvemento e Innovación, Xunta de Galicia (PGIDIT06PXIB502262PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Rozas.

Additional information

Communicated by C. Ammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozas, V., Zas, R. & García-González, I. Contrasting effects of water availability on Pinus pinaster radial growth near the transition between the Atlantic and Mediterranean biogeographical regions in NW Spain. Eur J Forest Res 130, 959–970 (2011). https://doi.org/10.1007/s10342-011-0494-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0494-4

Keywords

Navigation