Skip to main content
Log in

Modern Trends and Problems of Soil Mapping

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The main trends in the development of soil mapping methods are discussed, and the major problems are identified. By the present time, the transition from the paper-based soil maps to digital soil-geographical databases has already been completed. The digital mapping of soils and their properties is now accepted as the main method at all the levels of generalization. The approaches of digital soil mapping, as well as of the traditional one, are based on the ideas of V.V. Dokuchaev about the dependence of soils on soil-forming factors. However, in digital soil mapping, new achievements of mathematical statistics and mathematical modeling are being widely applied. This provides for a greater objectivity and reproducibility of the digital soil maps in comparison with the traditional soil maps. At the same time, all unsolved problems of soil cartography related to the lack of field observation data, scale, soil taxonomy, spatial microheterogeneity, and mapping of individual soil properties are preserved. Partially, these problems can be solved by using remote sensing data. When the soil geographical information is used to assess the quality of soil resources, the interpretation of remote sensing data for mapping purposes seems to be more preferable in comparison with the methods of digital soil mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. B. Achasov and D. I. Bidolakh, “The use of space and ground digital photography for determining the humus content in soils,” Eurasian Soil Sci. 41, 249–254 (2008).

    Article  Google Scholar 

  2. S. V. Goryachkin, “Modeling of soil cover genesis and evolution,” Eurasian Soil Sci. 29, 80–88 (1996).

    Google Scholar 

  3. V. V. Dokuchaev, Works (Academy of Sciences of USSR, Moscow, 1950), Vol. 4, Part 1 [in Russian].

    Google Scholar 

  4. A. V. Zhogolev, Candidate’s Dissertation in Agriculture (Moscow, 2016).

  5. A. V. Zhogolev, “Creation of digital regional soil map based on spot information with large-scale soil maps,” in Conference Dedicated to the 90th Anniversary of Foundation of Dokuchaev Soil Science Institute “Soil and Land Resources: State, Evaluation, and Use,” Abstracts of Papers (Dokuchaev Soil Science Inst., Moscow, 2017), pp. 11–12.

  6. A. V. Zhogolev and I. Yu. Savin, “Automated updating of medium-scale soil maps,” Eurasian Soil Sci. 49, 1241–1249 (2016). https://doi.org/10.1134/S1064229316110120

    Article  Google Scholar 

  7. The Pattern of Spatial Variation of Soil Properties and Information-Statistical Analysis Methods (Nauka, Moscow, 1970) [in Russian].

  8. N. P. Kirillova, T. M. Sileva, T. Yu. Ul’ynova, and I. Yu. Savin, “Match method and its application for the development of a large-scale soil map,” Eurasian Soil Sci. 47, 995–1004 (2014).

    Article  Google Scholar 

  9. A. T. Kirsanov, “Conclusions,” Tr. Pochv. Inst. im. V.V. Dokuchaeva 12, 297–304 (1935).

    Google Scholar 

  10. E. Yu. Kir’yanova and I. Yu. Savin, “Crop canopy heterogeneity detected based on MODIS satellite data as an indicator of contrast in soil patterns,” Russ. Agric. Sci. 39, 342–345 (2013).

    Article  Google Scholar 

  11. V. I. Kiryushina and S. V. Kiryushin, Agricultural Techniques (Lan’, St. Petersburg, 2017) [in Russian].

  12. D. N. Kozlov, Candidate’s Dissertation in Geography (Moscow, 2009).

  13. M. V. Konyushkova and D. N. Kozlov, “Automated analysis of the distribution of dark colored chernozem-like soils in the northern Caspian Lowland according to space-borne imagery (the case study at the Dzhanybek station),” Arid Ecosyst. 1, 65–73 (2011).

    Article  Google Scholar 

  14. V. I. Kravtsova, Space Satellite Methods of Cartography (Moscow State Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  15. E. S. Mohamed, A. M. Ali, M. A. El Shirbeny, A. A. Abd El Razek, and I. Yu. Savin, “Near infrared spectroscopy techniques for soil contamination assessment in the Nile Delta,” Eurasian Soil Sci. 49, 632–639 (2016).

  16. G. F. Nefedov, Soil Cartography (Tipogr. O-va Knigopechatnikov, Saratov, 1914) [in Russian].

    Google Scholar 

  17. National Instruction for Soil Studies and Compilation of Large-Scale Soil Maps of Land Use (Kolos, Moscow, 1973) [in Russian].

  18. E. Yu. Prudnikova, Candidate’s Dissertation in Biology (Moscow, 2013).

  19. E. Yu. Prudnikova and I. Yu. Savin, “Satellite assessment of dehumification of arable soils in Saratov region,” Eurasian Soil Sci. 48, 533–539 (2015).

    Article  Google Scholar 

  20. Yu. G. Puzachenko, D. N. Kozlov, E. V. Siunova, and A. G. Sankovskii, “Assessment of the reserves of organic matter in the world’s soils: methodology and results,” Eurasian Soil Sci. 39, 1284–1296 (2006).

    Article  Google Scholar 

  21. I. Yu. Savin, Candidate’s Dissertation in Geography (Moscow, 1990).

  22. I. Yu. Savin, “Effect of rainfall on the integral reflection of chernozem surface,” Pochvovedenie, No. 8, 976–980 (1995).

    Google Scholar 

  23. I. Yu. Savin, “Soil inventory with the use of GIS technologies,” Eurasian Soil Sci. 36, 1057–1064 (2003).

    Google Scholar 

  24. I. Yu. Savin, “Use the satellite data for compilation of soil maps: current trends and problems,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (6), 29–39 (2016).

    Article  Google Scholar 

  25. I. Yu. Savin, “Computer-based imitation of soil mapping,” in Digital Cartography of Soils: Theoretical and Experimental Studies, Ed. by A. L. Ivanov, I. Yu. Savin, N. P. Sorokina, (Dokuchaev Soil Science Inst., Moscow, 2012), pp. 26–34.

    Google Scholar 

  26. I. Yu. Savin, “The boundaries of soil-cartographic sections,” in Geography and Cartography of Soils (Nauka, Moscow, 1993), pp. 228–234.

    Google Scholar 

  27. I. Yu. Savin, “Open soil surface brightness as a direct sign for soil recognition on Landsat images,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 71, 52–64 (2013).

    Google Scholar 

  28. I. Yu. Savin, M. S. Simakova, and S. V. Ovechkin, “Development of soil cartography in Russia,” in Proceedings of the First All-Russian Open Conference “Soil and Land Resources: State, Evaluation, and Use” (Dokuchaev Soil Science Inst., Moscow, 2015), pp. 274–279.

  29. I. Yu. Savin and M. S. Simakova, “Satellite technologies for survey and monitoring of Russian soils,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 104–115 (2012).

    Google Scholar 

  30. M. S. Simakova, “New method of soil cartography using relief flexure method,” Pochvovedenie, No. 6, 121–127 (1988).

    Google Scholar 

  31. M. S. Simakova and I. Yu. Savin, “Use of aerial- and space-survey images of the Earth’s surface in mapping soils of Russia: prospects and objectives,” Eurasian Soil Sci. 31, 1215–1222 (1998).

    Google Scholar 

  32. N. P. Sorokina, “Correction of chernozem diagnostics by statistical methods,” in Large-Scale Cartography of Soils: Methods, Theory, and Practice (Moscow, 1971), pp. 123–128.

    Google Scholar 

  33. I. N. Stepanov, U. K. Abdunazarov, M. N. Brynskikh, N. F. Deeva, A. A. Il’ina, L. P. Peido, Z. F. Povetukhina, and F. I. Khakimov, Temporal Method for Large- and Medium0-Scale Map Compilation of Relief Flexure: Recommendations (Scientific Center of Biological Studies, Academy of Sciences of USSR, Pushchino, 1983) [in Russian].

    Google Scholar 

  34. S. I. Tyuremnov, “Northern boundary of chernozem in the central part of European USSR,” Pochvovedenie, Nos. 1–2, 77–94 (1925).

    Google Scholar 

  35. Digital Cartography of Soils: Theoretical and Experimental Studies, Ed. by A. L. Ivanov, I. Yu. Savin, N. P. Sorokina, (Dokuchaev Soil Science Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  36. A. V. Chinilin and I. Yu. Savin, “The large-scale digital mapping of soil organic carbon using machine learning algorithms,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 91, 46–62 (2018).

    Google Scholar 

  37. A. V. Chinilin, N. P. Chizhikova, I. Yu. Savin, and E. B. Varlamov, “Mineralogical composition of ordinary chernozems in Central chernozem region layered by Neogene sands,” in Conference Dedicated to the 90th Anniversary of Foundation of Dokuchaev Soil Science Institute “Soil and Land Resources: State, Evaluation, and Use,” Abstracts of Papers (Dokuchaev Soil Science Inst., Moscow, 2017), pp. 108–109.

  38. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  39. K. Adhikari, B. Minasny, M. B. Greve, and M. H. Greve, “Constructing a soil class map of Denmark based on the FAO legend using digital techniques,” Geoderma 214–215, 101–113 (2014).

    Article  Google Scholar 

  40. M. E. Angelini, G. B. Heuvelink, B. Kempen, D. M. Morras, and D. M. Rodriguez, “Digital soil mapping of an Argentinean pampa region using structural equation modeling,” in Proceedings of the Wageningen Soil Conference 2015 “Soil Science in a Changing World,” Abstracts of Papers (Wageningen, 2015), pp. 134–134.

  41. GlobalSoilMap—Digital Soil Mapping from Country to Globe: Proceedings of the Global Soil Map 2017 Conference, July 4–6, 2017, Moscow, Russia, Ed. by D. Arrouays, I. Savin, J. Leenaars, and A. B. McBratney (CRC Press, Boca Raton, 2018).

  42. D. Arrouays, M. G. Grundy, A. E. Hartemink, J. W. Hempel, G. B. M. Heuvelink, S. Young Hong, P. Lagacherie, G. Lelyk, A. B. McBratney, N. J. McKenzie, M. L. Mendonca-Santos, B. Minasny, L. Montanarella, I. O. A. Odeh, P. A. Sanchez, et al., “GlobalSoilMap: toward a fine-resolution global grid of soil properties,” Adv. Agron. 125, 93–134 (2014).

    Article  Google Scholar 

  43. R. Amundson and H. Jenni, “The place of humans in the state factor theory of ecosystems and their soils,” Soil Sci. 151, 99–109 (1991).

    Article  Google Scholar 

  44. R. Balestriero, Neural decision trees, 2017. arXiv preprint arXiv:1702.07360.

  45. H. M. Bartholomeus, E. M. Schaepman, L. Kooistra, A. Stevens, B. W. Hoogmoed, and O. S. P. Spaargaren, “Spectral reflectance based indices for soil organic carbon quantification,” Geoderma 145, 28–36 (2008).

    Article  Google Scholar 

  46. T. Behrens, H. Förster, T. Scholten, U. Steinrücken, E. D. Spies, and M. Goldschmitt, “Digital soil mapping using artificial neural networks,” J. Plant Nutr. Soil Sci. 168 (1), 21–33 (2005).

    Article  Google Scholar 

  47. H. Bellinaso, J. A. M. Demattê, and S. A. Romeiro, “Soil spectral library and its use in soil classification,” Rev. Bras. Ciênc. Solo 34, 861–870 (2010).

    Article  Google Scholar 

  48. E. Ben-Dor, S. Chabrillat, J. A. M. Demattê, G. R. Taylor, J. Hill, M. L. Whiting, and S. Sommer, “Using imaging spectroscopy to study soil properties,” Remote Sens. Environ. 113, 38–55 (2009).

    Article  Google Scholar 

  49. E. C. Brevik and A. E. Hartemink, “Soil maps of the United States of America,” Soil Sci. Soc. Am. J. 77, 1117–1132 (2013). https://doi.org/10.2136/sssaj2012.0390

    Article  Google Scholar 

  50. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees (CRC Press, Boca Raton, 1984).

    Google Scholar 

  51. L. Brocca, T. Tullo, F. Melone, T. Moramarco, and R. Morbidelli, “Catchment scale soil moisture spatial-temporal variability,” J. Hydrol. 422, 63–75 (2012).

    Article  Google Scholar 

  52. D. M. Browning and M. C. Duniway, “Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential,” Appl. Environ. Soil Sci. 2, 421904 (2011).

    Google Scholar 

  53. D. J. Brus, J. J. De Gruijter, and J. W. van Groenigen, “Designing spatial coverage samples using the k-means clustering algorithm,” Dev. Soil Sci. 31, 183–192 (2006).

    Google Scholar 

  54. N. W. Chaney, E. F. Wood, A. B. McBratney, J. W. Hempel, T. W. Nauman, C. W. Brungard, and N. P. Odgers, “POLARIS: A 30-meter probabilistic soil series map of the contiguous United States,” Geoderma 274, 54–67 (2016).

    Article  Google Scholar 

  55. R. De Jeu and W. Dorigo, “On the importance of satellite observed soil moisture,” Int. J. Appl. Earth Obs. Geoinf. 45, 107–109 (2016).

    Article  Google Scholar 

  56. C. Gomez, P. Lagacherie, and G. Coulouma, “Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements,” Geoderma 148 (2), 141–148 (2008).

    Article  Google Scholar 

  57. M. H. Greve and H. Breuning-Madsen, “Soil mapping in Denmark,” in European Soil Bureau Research Report No. 6 “Soil Resources of Europe” (European Communities, Luxembourg, 1999), Section 2, pp. 49–56.

  58. M. Grissa, R. Abdelfattah, G. Mercier, M. Zribi, A. Chahbi, and Z. Lili-Chabaane, “Empirical model for soil salinity mapping from SAR data,” in IEEE 2011 Geoscience and Remote Sensing Symposium (IGARSS) (IEEE International, Piscataway, 2011), pp. 1099–1102.

  59. Guidelines: Land Evaluation for Rainfed Agriculture, Soil Bulletin no. 52 (UN Food and Agriculture Organization, Rome, 1983).

  60. A. E. Hartemink and M. P. Sonneveld, “Soil maps of the Netherlands,” Geoderma 204, 1–9 (2013).

    Article  Google Scholar 

  61. T. Hengl, Global Soil Information Facilities (GSIF), R Package Version 0.4-1 (ISRIC—World Soil Information, Wageningen, 2014).

    Google Scholar 

  62. T. Hengl, G. B. M. Heuvelink, and A. Stein, “A generic framework for spatial prediction of soil variables based on regression-kriging,” Geoderma 120 (1), 75–93 (2004).

    Article  Google Scholar 

  63. T. Hengl, J. M. de Jesus, G. B. Heuvelink, M. R. Gonzalez, M. Kilibarda, A. Blagotić, and M. A. Guevara, “SoilGrids250m: Global gridded soil information based on machine learning,” PloS One 12 (2), e0169748 (2017).

    Article  Google Scholar 

  64. T. Hengl, J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro, and M. R. Gonzalez, “SoilGrids1km—global soil information based on automated mapping,” PLoS One 9 (8), e105992 (2014).

    Article  Google Scholar 

  65. K. W. Holmes, “Spatial disaggregation of conventional soil mapping across Western Australia using DSMART,” in GlobalSoilMap: Basis of the Global Spatial Soil Information System (CRC Press, Boca Raton, 2014), pp. 273–279.

    Google Scholar 

  66. M. T. Jabbar and X. Chen, “Land degradation due to salinization in arid and semi-arid regions with the aid of geo-information techniques,” Geospatial Inf. Sci. 11 (2), 112–120 (2008).

    Article  Google Scholar 

  67. B. Kempen, D. J. Brus, G. B. Heuvelink, and J. J. Stoorvogel, “Updating the 1: 50.000 Dutch soil map using legacy soil data: a multinomial logistic regression approach,” Geoderma 151 (3), 311–326 (2009).

    Article  Google Scholar 

  68. P. Lagacherie and S. Holmes, “Addressing geographical data errors in a classification tree for soil unit prediction,” Int. J. Geogr. Inf. Sci. 11 (2), 183–198 (1997).

    Article  Google Scholar 

  69. P. Lagacherie and A. B. McBratney, “Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping,” Dev. Soil Sci. 31, 3–22 (2006).

    Google Scholar 

  70. Digital Soil Mapping: An Introductory Perspective, Ed. by P. Lagacherie, A. McBratney, and M. Voltz (Elsevier, Amsterdam, 2006), Vol. 31.

    Google Scholar 

  71. R. Lhissou, A. El Harti, and K. Chokmani, “Mapping soil salinity in irrigated land using optical remote sensing data,” Eurasian J. Soil Sci. 3, 82–88 (2014).

    Article  Google Scholar 

  72. A. Marchetti, C. Piccini, R. Francaviglia, S. Santucci, and I. Chiuchiarelli, “Estimating soil organic matter content by regression kriging,” in Digital Soil Mapping (Springer-Verlag, New York, 2010), pp. 241–254.

    Google Scholar 

  73. A. B. McBratney, M. L. M. Santos, and B. Minasny, “On digital soil mapping,” Geoderma 117 (1–2), 3–52 (2003).

    Article  Google Scholar 

  74. B. Minasny and A. B. McBratney, “A conditioned Latin hypercube method for sampling in the presence of ancillary information,” Comp. Geosci. 32 (9), 1378–1388 (2006).

    Article  Google Scholar 

  75. B. Minasny and A. B. McBratney, “Methodologies for global soil mapping,” in Digital Soil Mapping: Bridging Research, Environmental Application, and Operation (Springer-Verlag, New York, 2010), Vol. 2, pp. 429–436.

    Google Scholar 

  76. V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping: a review,” Geoderma 162, 1–19 (2011).

    Article  Google Scholar 

  77. S. J. Nield, J. L. Boettinger, and R. D. Ramsey, “Digitally mapping gypsic and natric soil areas using Landsat ETM data,” Soil Sci. Soc. Am. J. 71 (1), 245–252 (2007).

    Article  Google Scholar 

  78. Y. Ninomiya, B. Fu, and T. J. Cudahy, “Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data,” Remote Sens. Environ. 99 (1), 127–139 (2005).

    Article  Google Scholar 

  79. I. O. A. Odeh and A. Onus, “Spatial analysis of soil salinity and soil structural stability in a semi-arid region of New South Wales, Australia,” Environ. Manage. 42 (2), 265–278 (2008).

    Article  Google Scholar 

  80. N. P. Odgers, W. Sun, A. B. McBratney, B. Minasny, and D. Clifford, “Disaggregating and harmonizing soil map units through re-sampled classification trees,” Geoderma 214, 91–100 (2014).

    Article  Google Scholar 

  81. R. V. Rossel, T. W. Behrens, E. Ben-Dor, D. J. Brown, J. A. Demattê, K. Shepherd, Z. Shi, B. Stenberg, A. Stevens, V. Adamchuk, H. Aichi, B. G. Barthes, H. M. Bartholomeus, A. D. Bayer, M. Bernoux, et al., “A global spectral library to characterize the World’s soil,” Earth Sci. Rev. 155, 198–230 (2016). https://doi.org/10.1016/j.earscirev.2016.01.012

    Article  Google Scholar 

  82. N. Saby, B. Minasny, D. Arrouays, J. De Gruitjer, B. P. Malone, and A. B. McBratney, “Designing soil monitoring schemes for large areas based on high resolution digital soil mapping products: a case study from France,” in Proceedings of Pedometrics 2017 Conference (Wageningen, 2017), p. 298.

  83. A. Serteser, M. Kargioğlu, Y. Içağa, and M. Konuk, “Vegetation as an indicator of soil properties and water quality in the Akarcay Stream (Turkey),” Environ. Manage. 42, 764 (2008).

    Article  Google Scholar 

  84. S. Tiwari, S. Saha, and S. Kumar, “Prediction modeling and mapping of soil carbon content using artificial neural network, hyperspectral satellite data and field spectroscopy,” Adv. Remote Sens. 4, 63–72 (2015).

    Article  Google Scholar 

  85. D.-C. Wang, G.-L. Zhang, and M.-S. Zhao, “Retrieval and mapping of soil texture based on land surface diurnal temperature range data from MODIS,” PLoS One 10 (6), e0129977 (2015).

    Article  Google Scholar 

  86. A. X. Zhu, B. Hudson, J. Burt, K. Lubich, and D. Simonsonet, “Soil mapping using GIS, expert knowledge, and fuzzy logic,” Soil Sci. Soc. Am. J. 65 (5), 1463–1472 (2001).

    Article  Google Scholar 

  87. A. X. Zhu, L. Band, R. Vertessy, and B. Dutton, “Derivation of soil properties using a soil land inference model (SoLIM),” Soil Sci. Soc. Am. J. 61 (2), 523–533 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 18-016-00052) and by the Russian Science Foundation (project no. 14-17-00171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Savin.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, I.Y., Zhogolev, A.V. & Prudnikova, E.Y. Modern Trends and Problems of Soil Mapping. Eurasian Soil Sc. 52, 471–480 (2019). https://doi.org/10.1134/S1064229319050107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319050107

Keywords:

Navigation