Skip to main content

Advertisement

Log in

What’s Hiding Behind Ontogenetic δ13C Variations in Mollusk Shells? New Insights from the Great Scallop (Pecten maximus)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Mollusk shells contain geochemical information about environmental conditions that prevailed at the time of formation. We investigated ontogenetic and seasonal variations of δ13C in calcitic shells of Pecten maximus. Ontogenetic variations of δ13Cshell in three large specimens collected in Norway, France, and Spain exhibited a similar linear decrease with increasing shell height. We removed this linear drift (detrending). These three residual time series displayed variations that could be linked to environmental fluctuations. To check it, we reanalyzed the isotopic datasets of Lorrain et al. (Journal of Experimental Marine Biology and Ecology 275:47–61, 2002, Geochimica et Cosmochimica Acta 68:3509–3519, 2004), who worked on three scallops harvested in 2000 in the bay of Brest (France), a well-monitored ecosystem. Lowest values of δ13Cshell detrended were recorded in all shells in late spring–early summer, most likely reflecting corresponding variations in food availability. Our results indicate that ontogenetic and seasonal variations of δ13Cshell cannot be used as a proxy for past δ13CDIC variations but should be considered as promising tools for ecophysiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barats, A., D. Amouroux, C. Pécheyran, L. Chauvaud, and O.F.X. Donard. 2008. High-frequency archives of manganese inputs to coastal waters (Bay of Seine, France) resolved by the LA-ICP-MS analysis of calcitic growth layers along scallop shells (Pecten maximus). Environmental Science and Technology 42: 86–92.

    Article  CAS  Google Scholar 

  • Carré, M., I. Bentaleb, M. Fontugne, and D. Lavallée. 2005. Strong El Niño events during the early Holocene: Stable isotope evidence from Peruvian sea-shells. Holocene 15: 42–47.

    Article  Google Scholar 

  • Chauvaud, L., G. Thouzeau, and Y.-M. Paulet. 1998. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). Journal of Experimental Marine Biology and Ecology 227: 83–111.

    Article  Google Scholar 

  • Chauvaud, L., F. Jean, O. Ragueneau, and G. Thouzeau. 2000. Long-term variation of the Bay of Brest ecosystem: Benthic-pelagic coupling revisited. Marine Ecology Progress Series 200: 35–48.

    Article  CAS  Google Scholar 

  • Chauvaud, L., Lorrain, A., Dunbar, R.B., Paulet, Y.-M., Thouzeau, G., Jean, F., Guarini, J.-M., Mucciarone, D. 2005. Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochemistry Geophysics Geosystems 6; doi:10.1029/2004GC000890.

  • Dettman, D.L., K.W. Flessa, P.D. Roopnarine, B.R. Schone, and D.H. Goodwin. 2004. The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado river discharge. Geochimica et Cosmochimica Acta 68: 1253–1263.

    Article  CAS  Google Scholar 

  • Elliot, M., K. Welsh, C. Chilcott, M. McCulloch, J. Chappell, and B. Ayling. 2009. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 280: 132–142.

    Article  Google Scholar 

  • Epstein, S., R. Buchsbaum, H.A. Lowenstam, and H.C. Urey. 1953. Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America 64: 1315–1326.

    Article  CAS  Google Scholar 

  • Fritz, P., and S. Poplawski. 1974. 18O and 13C in the shells of freshwater molluscs and their environments. Earth and Planetary Science Letters 24: 91–98.

    Article  CAS  Google Scholar 

  • Garcia-March, J., and A. Márquez-Aliaga. 2007. Pinna nobilis L. 1758 age determination by internal shell register. Marine Biology 151: 1077–1085.

    Article  Google Scholar 

  • Gillikin, D.P., F. Dehairs, W. Baeyens, J. Navez, A. Lorrain, and L. André. 2005. Inter- and intra-annual variations of Pb/Ca ratios in clam shells (Mercenaria mercenaria): A record of anthropogenic lead pollution? Marine Pollution Bulletin 50: 1530–1540.

    Article  CAS  Google Scholar 

  • Gillikin, D.P., A. Lorrain, L. Meng, and F. Dehairs. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71: 2936–2946.

    Article  CAS  Google Scholar 

  • Gillikin, D.P., Hutchinson, K.A., Kumai, Y. 2009. Ontogenic increase of metabolic carbon in freshwater mussel shells (Pyganodon cataracta). Journal of Geophysical Research 114; doi:10.1029/2008JG000829.

  • Goodwin, D.H., B.R. Schöne, and D.L. Dettman. 2003. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: Models and observations. Palaios 18: 110–125.

    Article  Google Scholar 

  • Grefsrud, E.S., Y. Dauphin, J.-P. Cuif, A. Denis, and Ø. Strand. 2008. Modification in microstructure of cultured and wild scallops shells (Pecten maximus). Journal of Shellfish Research 27: 633–641.

    Article  Google Scholar 

  • Ivany, L.C., B.H. Wilkinson, and D.S. Jones. 2003. Using stable isotopic data to resolve rate and duration of growth throughout ontogeny; an example from the surf clam, Spisula solidissima. Palaios 18: 126–137.

    Article  Google Scholar 

  • Kobashi, T., and E.L. Grossman. 2003. The oxygen isotopic record of seasonality in Conus shells and its application to understanding Late Middle Eocene (38 Ma) climate. Paleontological Research 7: 343–355.

    Article  Google Scholar 

  • Lorrain, A., Y.M. Paulet, L. Chauvaud, N. Savoye, E. Nezan, and L. Guérin. 2000. Growth anomalies in Pecten maximus from coastal waters (Bay of Brest, France): Relationship with diatom blooms. Journal of the Marine Biological Association (United Kingdom) 80: 667–673.

    Article  CAS  Google Scholar 

  • Lorrain, A., Y.-M. Paulet, L. Chauvaud, N. Savoye, A. Donval, and C. Saout. 2002. Differential δ13C and δ15N signatures among scallop tissues: Implications for ecology and physiology. Journal of Experimental Marine Biology and Ecology 275: 47–61.

    Article  CAS  Google Scholar 

  • Lorrain, A., Y.-M. Paulet, L. Chauvaud, R.B. Dunbar, D. Mucciarone, and M. Fontugne. 2004. δ13C variation in scallop shells: Increasing metabolic carbon contribution with body size? Geochimica et Cosmochimica Acta 68: 3509–3519.

    Article  CAS  Google Scholar 

  • Lorrain, A., D.P. Gillikin, Y.-M. Paulet, L. Chauvaud, J. Navez, A. Le Mercier, and L. André. 2005. Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 33: 965–968.

    Article  CAS  Google Scholar 

  • Magnesen, T., and G. Christophersen. 2008. Reproductive cycle and conditioning of translocated scallops (Pecten maximus) from five broodstock populations in Norway. Aquaculture 285: 109–116.

    Article  Google Scholar 

  • Marin, F., and G. Luquet. 2004. Molluscan shell proteins. Comptes Rendus Palevol 3: 469–492.

    Article  Google Scholar 

  • McConnaughey, T.A. 2003. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: Carbonate and kinetic models. Coral Reefs 22: 316–327.

    Article  Google Scholar 

  • McConnaughey, T., and D. Gillikin. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28: 287–299.

    Article  CAS  Google Scholar 

  • Mook, W.G., and J.C. Vogel. 1968. Isotopic equilibrium between shells and their environment. Science 159: 874–875.

    Article  CAS  Google Scholar 

  • Mook, W.G. 1971. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology 9: 245–263.

    Article  CAS  Google Scholar 

  • Müller-Lupp, T., and H. Bauch. 2005. Linkage of Arctic atmospheric circulation and Siberian shelf hydrography: A proxy validation using δ18O records of bivalve shells. Global and Planetary Change 48: 175–186.

    Article  Google Scholar 

  • Nogueira, E., F.F. Pérez, and A.F. Ríos. 1997. Seasonal patterns and long-term trends in an estuarine upwelling ecosystem (Ría de Vigo, NW Spain). Estuarine, Coastal and Shelf Science 44: 285–300.

    Article  CAS  Google Scholar 

  • Owen, R., H. Kennedy, and C. Richardson. 2002. Isotopic partitioning between scallop shell calcite and seawater: Effect of shell growth rate. Geochimica et Cosmochimica Acta 66: 1727–1737.

    Article  CAS  Google Scholar 

  • Paulet, Y.-M., A. Lucas, and A. Gérard. 1988. Reproduction and larval development in two Pecten maximus (L.) populations from Brittany. Journal of Experimental Marine Biology and Ecology 119: 145–156.

    Article  Google Scholar 

  • Paulet, Y.-M., F. Bekhadra, N. Dechauvelle, A. Donval, and G. Dorange. 1997. Cycles saisonniers, reproduction et qualité des ovocytes chez Pecten maximus en rade de Brest. Annales de l’Institut Océanographique Paris 73: 101–112.

    Google Scholar 

  • Radermacher, P., B.R. Schöne, E. Gischler, W. Oschmann, J. Thébault, and J. Fiebig. 2009. Sclerochronology—a highly versatile tool for mariculture and reconstruction of life history traits of the queen conch, Strombus gigas (Gastropoda). Aquatic Living Resources 22: 307–318.

    Article  Google Scholar 

  • Richardson, C.A., M. Peharda, H. Kennedy, P. Kennedy, and V. Onofri. 2004. Age, growth rate and season of recruitment of Pinna nobilis (L.) in the Croatian Adriatic determined from Mg:Ca and Sr:Ca shell profiles. Journal of Experimental Marine Biology and Ecology 299: 1–16.

    Article  CAS  Google Scholar 

  • Romanek, C.S., D.S. Jones, D.F. Williams, D.E. Krantz, and R. Radtke. 1987. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima. Marine Biology 94: 385–393.

    Article  CAS  Google Scholar 

  • Roux, M., E. Schein, M. Rio, F. Davanzo, and A. Filly. 1990. Enregistrement des paramètres du milieu et des phases de croissance par les rapports 18O/16O et 13C/12C dans la coquille de Pecten maximus (Pectinidae, Bivalvia). Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 310: 385–390.

    Google Scholar 

  • Saout, C., C. Quéré, A. Donval, Y.-M. Paulet, and J.-F. Samain. 1999. An experimental study of the combined effects of temperature and photoperiod on reproductive physiology of Pecten maximus from the bay of Brest (France). Aquaculture 172: 301–314.

    Article  Google Scholar 

  • Schöne, B.R., W. Oschmann, J. Rössler, A.D.F. Castro, S.D. Houk, I. Kröncke, W. Dreyer, R. Janssen, H. Rumohr, and E. Dunca. 2003. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31: 1037–1040.

    Article  Google Scholar 

  • Schöne, B.R., D.L. Rodland, A. Wehrmann, B. Heidel, W. Oschmann, Z. Zhang, J. Fiebig, and L. Beck. 2007. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): Life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology 150: 1237–1252.

    Article  Google Scholar 

  • Schöne, B.R. 2008. The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters 28: 269–285.

    Article  Google Scholar 

  • Strand, Ø., Nylund, A. 1991. The reproductive cycle of the scallop Pecten maximus (L.) from two populations in Western Norway, 60°N and 64°N. In: Shumway, S.E. (ed.), An International Compendium of Scallop Biology and Culture, Special Publication of the World Aquaculture Society, pp. 9–105.

  • Strohmeier, T., A. Duinker, and O. Lie. 2000. Seasonal variations in chemical composition of the female gonad and storage organs in Pecten maximus (L.) suggesting that somatic and reproductive growth are separated in time. Journal of Shellfish Research 19: 741–747.

    Google Scholar 

  • Tanaka, N., M.C. Monaghan, and D.M. Rye. 1986. Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320: 520–523.

    Article  CAS  Google Scholar 

  • Thébault, J., L. Chauvaud, J. Clavier, J. Guarini, R.B. Dunbar, R. Fichez, D.A. Mucciarone, and E. Morize. 2007. Reconstruction of seasonal temperature variability in the tropical Pacific Ocean from the shell of the scallop, Comptopallium radula. Geochimica et Cosmochimica Acta 71: 918–928.

    Article  Google Scholar 

  • Thébault, J., L. Chauvaud, S. L’Helguen, J. Clavier, A. Barats, S. Jacquet, C. Pécheyran, and D. Amouroux. 2009a. Barium and molybdenum records in bivalve shells: Geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography 54: 1002–1014.

    Article  Google Scholar 

  • Thébault, J., B.R. Schöne, N. Hallmann, M. Barth, and E.V. Nunn. 2009b. Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica (northeast Iceland). Geochemistry Geophysics Geosystems. doi:10.1029/2009GC002789.

    Google Scholar 

  • Urey, H.C., H.A. Lowenstam, S.R. Epstein, and C.R. McKinney. 1951. Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southeastern United States. Bulletin of the Geological Society of America 62: 399–416.

    Article  CAS  Google Scholar 

  • Wanamaker Jr., A.D., K.J. Kreutz, B.R. Schöne, N. Pettigrew, H.W. Borns, D.S. Introne, D. Belknap, K.A. Maasch, and S. Feindel. 2008a. Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. Climate Dynamics 31: 183–194.

    Article  Google Scholar 

  • Wanamaker Jr., A.D., J. Heinemeier, J.D. Scourse, C.A. Richardson, P.G. Butler, J. Eiríksson, and K.L. Knudsen. 2008b. Very-long lived molluscs confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50: 399–412.

    Google Scholar 

  • Wefer, G., and J.S. Killingley. 1980. Growth histories of strombid snails from Bermuda recorded in their 18O and 13C profiles. Marine Biology 60: 129–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Laurent Chauvaud gratefully acknowledges the EU program “Training and mobility Researchers” (Large Scale Facilities and “Marie Curie” research training grants) for the award of a postdoctoral fellowship. We are grateful to Robert B. Dunbar and David A. Mucciarone (Stanford University, CA, USA) for isotopic analyses of P. maximus shells and to Jacques Guillou for providing the SOMLIT data. Special thanks are due to Nolwenn Coïc for her help with the figures. This manuscript has benefited from helpful comments by Anthony Robson. This study was partly supported by the EU program “Marie Curie” and the French program ANR-Blanc (Agence Nationale de la Recherche—CHIVAS project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chauvaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvaud, L., Thébault, J., Clavier, J. et al. What’s Hiding Behind Ontogenetic δ13C Variations in Mollusk Shells? New Insights from the Great Scallop (Pecten maximus). Estuaries and Coasts 34, 211–220 (2011). https://doi.org/10.1007/s12237-010-9267-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-010-9267-4

Keywords

Navigation