Skip to main content

Advertisement

Log in

Validation of RegCM-CHEM4 model by comparison with surface measurements in the Greater Cairo (Egypt) megacity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The densely populated Greater Cairo (GC) region suffers from severe air quality issues caused by high levels of anthropogenic activities, such as motorized traffic, industries, and agricultural biomass burning events, along with natural sources of particulate matter, such as wind erosion of arid surfaces. Surface-measured concentrations of particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) and its precursor’s gases (nitrogen dioxide, NO2; carbon monoxide, CO) were obtained for the GC region. The PM10 concentrations were found to exceed remarkably the Egyptian guidelines (150 μg/m3). These high levels of PM10 were recorded throughout 68% of the period of measurement in some industrial areas (El-Kolaly). The measured data of pollutants were used for both the evaluation of environmental pollution levels and the validation of the online-integrated regional climate chemistry model “RegCM-CHEM4.” Calculation of the bias between the model results and the measured data was used to evaluate the model performance in order to assess its ability in reproducing the chemical species over the area. The model was found to reproduce the seasonal cycle of the pollutants successfully, but with a large underestimation of the PM10 values. Validation of the RegCM-CHEM4 indicated that the emission inventories of mobile sources and anthropogenic activities need to be improved especially with respect to local and regional activities in order to enhance air quality simulations over the GC region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abu-Allaban M, Lowenthal DH, Gertler AW, Labib M (2007) Sources of PM10 and PM2.5 in Cairo’s ambient air. Environ Monit Assess 133:417–425. https://doi.org/10.1007/s10661-006-9596-8

    Article  CAS  Google Scholar 

  • Al-Jeelani HA (2014) Diurnal and seasonal variations of surface ozone and its precursors in the atmosphere of Yanbu, Saudi Arabia. J Environ Protect 5:408–422. https://doi.org/10.4236/jep.2014.55044

    Article  CAS  Google Scholar 

  • Central Agency for Public Mobilisation and Statistics (2017) Statistical yearbook 2017. CAMPAS, Arab Republic of Egypt

    Google Scholar 

  • Drori R, Dayan U, Edwards DP, Emmons LK, Erlick C (2012) Attributing and quantifying European carbon monoxide sources affecting the Eastern Mediterranean: a combined satellite, modelling, and synoptic analysis study. Atmos Chem Phys 12(1067–1082):2012. https://doi.org/10.5194/acp-12-1067-2012

    Article  CAS  Google Scholar 

  • EEAA (1994) Law number 4 of 1994. Promulgating the environment law and its executive regulation. President Decree 4:130 Retrieved from http://extwprlegs1.fao.org/docs/pdf/egy4984E.pdf. Accessed 4 Aug 2018

  • Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal JS, Solmon F, Rauscher S, Zakey A, O’Brien T, Nogherotto R, Giuliani G (2014) Regional climate model RegCM: reference manual version 4.5. ICTP, Italy

    Google Scholar 

  • El-Metwally M, Alfaro SC, Abdel Wahab MM, Favez O, Mohamed Z, Chatenet B (2011) Aerosol properties and associated radiative effects over Cairo (Egypt). Atmos Res 99:263–276

    Article  CAS  Google Scholar 

  • Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. https://doi.org/10.5194/gmd3-43-2010

    Article  Google Scholar 

  • Favez O, Cachier H, Sciare J, Alfaro SC, El-Araby TM, Harhash MA, Abdelwahab MM (2008) Seasonality of major aerosol species and their transformations in Cairo megacity. Atmos Environ 42:1503–1516. https://doi.org/10.1016/j.atmosenv.2007.10.081

    Article  CAS  Google Scholar 

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient aerosol thermodynamic equilibrium model for K+, Ca2+, Mg2+, NH4+, Na+, SO4 2−, NO3 , Cl, H2O aerosols. Atmos Chem Phys 7:4639–4659

    Article  CAS  Google Scholar 

  • Frederick RH (1964) On the representativeness of surface wind observations using data from Nashville, Tennessee. Irrt J Air Wet Polut 8:11

    Google Scholar 

  • Giorgi F, Elguindi N, Cozzini S, Giuliani G (2013) Regional climatic model regcm user’s guide version 4.4. ICTP, Italy

    Google Scholar 

  • Graham IR (1968) An analysis of turbulence statistics at Fort Wayne, Indiana. J Appl Meteorol 7:90–93

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

    Article  Google Scholar 

  • Holtslag AAM, De Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575

    Article  Google Scholar 

  • Jacobson MZ (2002) Atmospheric Pollution: History, Science, and Regulation, UK: Cambridge University Press

  • Kalabokas PD, Thouret V, Cammas J-P, Volz-Thomas A, Boulanger D, Repapis CC (2015) The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case). Tellus B Chem Phys Meteorol 67:1. https://doi.org/10.3402/tellusb.v67.27853

    Article  CAS  Google Scholar 

  • Latha KM, Badarinath KVS (2003) Black carbon aerosols over tropical urban environment—a case study. Atmos Res 69:125–133

    Article  CAS  Google Scholar 

  • Lin W, Xu X, Ma Z, Zhao H, Liu X, Wang Y (2012) Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: effectiveness of control measures. J Environ Sci 24(1):34–49. https://doi.org/10.1016/S1001-0742(11)60727-4

    Article  CAS  Google Scholar 

  • Lowenthal DH, Gertler AW, Labib MW (2014) Particulate matter source apportionment in Cairo: recent measurements and comparison with previous studies. Int J Environ Sci Technol 11(3):657–670. https://doi.org/10.1007/s13762-013-0272-6

    Article  CAS  Google Scholar 

  • Mahmoud KF, Alfaro SC, Favez O, Abdel Wahab MM, Sciare J (2008) Origin of black carbon concentration peaks in Cairo (Egypt). Atmos Res 89:161–169. https://doi.org/10.1016/j.atmosres.2008.01.004

    Article  CAS  Google Scholar 

  • Mostafa AN, Zakey AS, Monem AS, Wahab MMA (2018) Analysis of the surface air quality measurements in the Greater Cairo (Egypt) metropolitan. Glob J Adv Res 5(6):207–214

    Google Scholar 

  • Nenes A, Pandis SN, Pilinis C (1998a) ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem 4:123–152

    Article  CAS  Google Scholar 

  • Nenes A, Pilinis C, Pandis SN (1998b) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos Environ 33:1553–1560

    Article  Google Scholar 

  • Pandis SN, Seinfeld JH, Pilinis C (1992) Heterogeneous sulfate production in an urban fog. Atmos Environ 26:2509–2522. https://doi.org/10.1016/0960-1686(92)90103-R

    Article  Google Scholar 

  • Protonotariou A, Tombrou M, Giannakopoulos C, Kostopoulou E, Le Sager P (2010) Study of CO surface pollution in Europe based on observations and nested-grid applications of GEOS-CHEM global chemical transport model. Tellus B Chem Phys Meteorol 62(4):209–227. https://doi.org/10.1111/j.1600-0889.2010.00462.x

    Article  CAS  Google Scholar 

  • Qian Y, Giorgi F, Huang Y, Chameides W, Luo C (2001) Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus Ser B 53:171–191. https://doi.org/10.1034/j.1600-0889.2001.d01-14.x

    Article  Google Scholar 

  • Rao TVR, Reddy RR, Sreenivasulu R, Peeran SG, Murthy KNV, Ahammed YN, Gopal KR, Azeem PA, Sreedhar B, Sunitha K (2002a) Air space pollutants CO and NOx level at Anantapur (semi-arid zone), Andhra Pradesh. J Indian Geophys Union 3:151–161

    Google Scholar 

  • Rao TVR, Reddy RR, Sreenivasulu R, Peeran SG, Murthy KNV, Ahammed YN, Gopal KR, Azeem PA, Sreedhar B, Badarinath KVS (2002b) Seasonal and diurnal variations in the levels of NOx and CO trace gases at Anantapur in Andhra Pradesh. J Indian Geophys Union 3:163–168

    Google Scholar 

  • Robaa SM (2013) Some aspects of the urban climates of Greater Cairo Region, Egypt. Int J Climatol 33:3206–3216. https://doi.org/10.1002/joc.3661

    Article  Google Scholar 

  • Robert D, Bornsteinan, Douglass SJ (1977) Urban-rural wind velocity differences. Atmos Environ 11:597–404

    Article  Google Scholar 

  • Shalaby A, Zakey AS, Tawfik AB, Solmon F, Giorgi F, Stordal F, Sillman S, Zaveri RA, Steiner AL (2012) Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci Model Dev 5(3):741–760. https://doi.org/10.5194/gmd-5-741-2012

    Article  CAS  Google Scholar 

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus Ser B 58(1):51–72. https://doi.org/10.1111/j.1600-0889.2005.00155.x

    Article  CAS  Google Scholar 

  • Steiner AL, Tawfik AB, Shalaby A, Zakey AS, Abdel-Wahab MM, Salah Z, Solmon F, Sillman S, Zaveri RA (2014) Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region. Clim Res 59(3):207–228. https://doi.org/10.3354/cr01211

    Article  Google Scholar 

  • Udayasoorian C, Jayabalakrishnan RM, Suguna AR, Venkataramani S, Lal S (2013) Diurnal and seasonal characteristics of ozone and NOx over a high altitude Western Ghats location in Southern India. Adv Appl Sci Res, 2013 4(5):309–320

    CAS  Google Scholar 

  • Wheida A, Nasser A, ElNazer M, Borbon A, Abo El Ata GA, Abdel Wahab M, Alfaro SC (2017) Tackling the mortality from long-term exposure to outdoor air pollution in megacities: lessons from the Greater Cairo case study. Environ Res 160:223–231. https://doi.org/10.1016/j.envres.2017.09.028

    Article  CAS  Google Scholar 

  • WHO (2013) Health risks of air pollution in Europe—HRAPIE project: recommendations for concentration-response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2014) 7 million premature deaths annually linked to air pollution. Retrieved 25 March 2014.

  • World Bank (2013) The Arab Republic of Egypt for better or for worse: air pollution in Greater Cairo, World Bank annual report, Report No. 73074-EG. Retrieved from http://siteresources.worldbank.org. Accessed 26 Nov 2017

  • Xu WY, Zhao CS, Ran L, Lin WL, Yan P, Xu XB (2014) SO2 noontime-peak phenomenon in the North China Plain. Atmos Chem Phys 14(15):7757–7768. https://doi.org/10.5194/acp-14-7757-2014

    Article  CAS  Google Scholar 

  • Zakey AS, Abdelwahab MM, Makar PA (2004) Atmospheric turbidity over Egypt. Atmos. Environ. 38:1579–1591

    Article  CAS  Google Scholar 

  • Zakey AS, Solmon F, Giorgi F (2006) Development and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704

    Article  CAS  Google Scholar 

  • Zakey AS, Abdel-Wahab MM, Pettersson JBC, Gatari MJ, Hallquist M (2008) Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the Greater Cairo, Egypt. Atmosfera 21(2):171–189

    Google Scholar 

  • Zhang Y-L, Cao F (2015) Fine particulate matter (PM2.5) in China at a city level. Sci Rep 5:14884. https://doi.org/10.1038/srep14884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Egyptian Meteorological Authority (EMA) and the Egyptian Environmental Affairs Agency (EEAA) for providing the data used in this study. Thanks are extended to the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira N. Mostafa.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, A.N., Zakey, A.S., Alfaro, S.C. et al. Validation of RegCM-CHEM4 model by comparison with surface measurements in the Greater Cairo (Egypt) megacity. Environ Sci Pollut Res 26, 23524–23541 (2019). https://doi.org/10.1007/s11356-019-05370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05370-0

Keywords

Navigation