Skip to main content
Log in

Acute toxicity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol alone and in combination using a battery of bioassays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acute toxicity of chlorpyrifos (CP) and its principal metabolite 3,5,6-trichloro-2-pyridinol (TCP) alone and in combination have been evaluated using a test battery comprising aquatic organisms from different trophic levels: luminescent marine bacteria Aliivibrio fischeri, freshwater unicellular alga Pseudokirchneriella subcapitata, and cladoceran Daphnia magna. As expected, D. magna was the more sensitive organism to the compounds tested, being CP more toxic than its metabolite. On the contrary, TCP was found to be more toxic than its parental compound to A. fischeri and P. subcapitata. In all cases, the mixture of CP and its metabolite was more toxic than the compounds tested separately, multiplying between 5 and 200 times CP toxicity level and up to 15 times TCP toxicity level. These results indicate that the co-existence of parent chemical and its degradation product in the environment can result in a synergic interaction involving high risk to the aquatic ecosystems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali D, Kumar S (2012) Study the effect of chlorpyrifos on acetylcholinesterase and hematological response in freshwater fish Channa punctatus (Bloch). IIOAB J 3:12–18

    CAS  Google Scholar 

  • Álvarez M, du Mortier C, Fernández Cirelli, A (2013) Behavior of insecticide chlorpyrifos on soils and sediments with different organic matter content from Provincia de Buenos Aires, República Argentina. Water Air Soil Pollut 224, Article number 1453. https://doi.org/10.1007/s11270-013-1453-0

  • Andresen JA, Grundmann A, Bester K (2004) Organophosphorus flame retardants and plasticisers in surface waters. Sci Total Environ 332:155-166. 10.1016/j.scitotenv.2004.04.021

  • Anzecc & Armcanz 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra. AQUIRE (Aquatic Toxicity Information Retrieval Database) 1994. AQUIRE standard operating procedures. USEPA, Washington, DC.

  • Ashauer R, Boxall A, Brown C (2006) Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex. Arch Environ Contam Toxicol 51:542–548. https://doi.org/10.1007/s00244-005-0317-z

    Article  CAS  Google Scholar 

  • Bailey HC, DiGiorgiao C, Kroll K, Hinton DE, Miller JL, Starrett G (1996) Development of procedures for identifying pesticide toxicity in ambient waters: carbofuran, diazinon, chlorpyrifos. Environ Toxicol Chem 15:837–845. https://doi.org/10.1002/etc.5620150604

    Article  CAS  Google Scholar 

  • Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93. https://doi.org/10.1007/978-1-4612-2550-8_1

    Article  CAS  Google Scholar 

  • Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Soil Res 41:749–760. https://doi.org/10.1071/SR02062

    Article  CAS  Google Scholar 

  • Bhuvaneswari GR, Purushothaman CS, Pandey PK, Gupta S, Kumar HS (2018) Toxicological effects of chlorpyrifos on growth, chlorophyll a synthesis and enzyme activity of a Cyanobacterium, Spirulina (Arthrospira) platensis. Int J Curr Microbiol App Sci 7:2980–2990. https://doi.org/10.20546/ijcmas.2018.706.351

    Article  CAS  Google Scholar 

  • Bishoff HW, Bold HC (1963) Some soil algae from enchanted rock and related algae species. University of Texas Publication No. 6318, 43-59

  • Bonifacio AF, Ballesteros ML, Bonansea RI, Filippi I, Amé MV, Hued AC (2017) Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere 188:486–493. https://doi.org/10.1016/j.chemosphere.2017.08.156

    Article  CAS  Google Scholar 

  • Brock T (2003) Relevance of ecological protection goals in the evaluation of aquatic risks of chlorpyrifos. Disceussion Paper on the Workshop Exposure and Effects of Chlorpyrifos Following Use Under Southern European Conditions. Catania, Italy

  • Cáceres T, He W, Naidu R, Megharaj M (2007) Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: The influence of microbial degradation in natural water. Water Res 41:4497–4503. https://doi.org/10.1016/j.watres.2007.06.025

    Article  CAS  Google Scholar 

  • Chen S, Chen M, Wang Z, Qiu W, Wang J, Shen Y, Wang Y, Ge S (2016) Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environmental Toxicol Pharmacol 45:79–186. https://doi.org/10.1016/j.etap.2016.05.032

    Article  CAS  Google Scholar 

  • Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:261–681. https://doi.org/10.11124/pr.58.3.10

    Article  Google Scholar 

  • Christensen K, Harper B, Luukinen B, Buhl K, Stone D (2009) Chlorpyrifos General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/chlorpgen.html

  • Daam MA, Crum SJH, Van den Brink PJ, Nogueira AJA (2008) Fate and effects of the insecticide chlorpyrifos in outdoor plankton-dominated microcosms in Thailand. Environ Toxicol Chem 27:2530–2538. https://doi.org/10.1897/07-628.1

    Article  CAS  Google Scholar 

  • De Lorenzo ME, Serrano L (2003) Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health Part B 38:529–538. https://doi.org/10.1081/PFC-120023511

    Article  CAS  Google Scholar 

  • De Silva PMCS, Samayawardhena L (2005) Effects of chlorpyrifos on reproductive performances of guppy (Poecilia reticulata). Chemosphere 58:1293–1299. https://doi.org/10.1016/j.chemosphere.2004.10.030

    Article  CAS  Google Scholar 

  • EFSA European Food Safety Authority (2013) International framework dealing with human risk assessment of combined exposure to multiple chemicals. EFSA J 11:3313–3382. https://doi.org/10.2903/j.efsa.2013.3313

    Article  CAS  Google Scholar 

  • Eisler R (2000) Handbook of chemical risk assessment. Health hazards to humans, plants, and Animals, vol 2: Organics. Lewis Publishers, Washington, pp. 883-902

  • Eng ML, Stutchbury BJM, Morrissey CA (2017) Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep 7: Article number 15176. https://doi.org/10.1038/s41598-017-15446-x

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45. https://doi.org/10.1002/etc.5620200104

    Article  CAS  Google Scholar 

  • Ge J, Lu MX, Wang DL, Zhang Z, Liu X, Yu X (2015) Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake. Chemosphere 144:201–206. https://doi.org/10.1016/j.chemosphere.2015.08.072

    Article  CAS  Google Scholar 

  • Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 123–175. https://doi.org/10.1007/978-1-4614-1463-6_3

    Chapter  Google Scholar 

  • Giddings JM, Williams WM, Solomon KR, Giesy JP (2014) Risks to aquatic organisms from use of chlorpyrifos in the Unites States. In: Giesy JP, Solomon KR (eds) Reviews of Environmental Contamination and Toxicology, Ecological Risk Assessment of chlorpyrifos, vol 231. Springer, New York, pp 119–162

    Google Scholar 

  • Gorzinski SJ, Mayes MA, Ormand JR, Weinberg JT, Richardson CH (1991) 3,5,6Trichloro–2–pyridinoi: acute 96–hr toxicity to the water flea (Daphnia magna Straus). Rep ES–DR–0037–0423–7. DowElanco, Indianapolis, IN.

  • Guilhermino L, Diamantino T, Silva MC, Soares AMVM (2000) Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity? Ecotox Environ Saf 46:357–362. https://doi.org/10.1006/eesa.2000.1916

    Article  CAS  Google Scholar 

  • Gvozdenac S, Indic D, Vukovic S (2013) Phytotoxicity of chlorpyrifos to white mustard (Sinapis alba L) and maize (Zea mays L): potential indicators of insecticide presence in water. Pestic Fitomed 28:265–271. https://doi.org/10.2298/PIF1304265G

    Article  CAS  Google Scholar 

  • Han YT, Li WM, Dong FS, Xu J, Liu XG, Li YB, Kong ZQ, Liang XY, Zheng YQ (2013) The behavior of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol in tomatoes during home canning. Food Control 31:560–565. https://doi.org/10.1016/j.foodcont.2012.11.050

    Article  CAS  Google Scholar 

  • ISO (2007) ISO 11348-3:2007 - water quality - determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test) - part 3: Method using freeze-dried bacteria. ISO/TC 147/SC5 - water qual. methods

  • ISO (2012a) ISO 8692:2012 - water quality - fresh water algal growth inhibition test with unicellular green algae

  • ISO (2012b) ISO 6341:2012 - water quality - determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - acute toxicity test

  • Jin YX, Liu ZZ, Peng T, Fu ZW (2015) The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immun 43:405–414. https://doi.org/10.1016/j.fsi.2015.01.010

    Article  CAS  Google Scholar 

  • John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/s10311-015-0513-7

    Article  CAS  Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In: Whitacre D (ed) Reviews of Environmental Contamination and Toxicology, (Continuation of Residue Reviews), vol, vol 204. Springer, New York, pp 1–132

    Google Scholar 

  • Kersting K, Van Wijngaarden R (1992) Effects of chlorpyrifos on a microecosystem. Environ Toxicol Chem 11:365–372. https://doi.org/10.1002/etc.5620110310

    Article  CAS  Google Scholar 

  • Li X, Liu L, Zhang Y, Fang Q, Li Y, Li Y (2013) Toxic effects of chlorpyrifos on lysozyme activities, the contents of complement C3 and IgM, and IgM and complement C3 expressions in common carp (Cyprinus carpio L.). Chemosphere 93:428–433. https://doi.org/10.1016/j.chemosphere.2013.05.023

    Article  CAS  Google Scholar 

  • Majumder R, Kaviraj A (2019) Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chem Toxicol 42:487–495. https://doi.org/10.1080/01480545.2018.1425425

    Article  CAS  Google Scholar 

  • Mazanti L, Rice C, Bialek K, Sparling D, Stevenson C, Johnson WE, Kangas P, Rheinstein J (2003) Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms. Arch Environ Contam Toxicol 44:67–76. https://doi.org/10.1007/s00244-002-1259-3

    Article  CAS  Google Scholar 

  • Minagh E, Hernan R, O’Rourke K, Lyng FM, Davoren M (2009) Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotoxicol Environ Saf 72:434–440. https://doi.org/10.1016/j.ecoenv.2008.05.002

    Article  CAS  Google Scholar 

  • Moore MT, Hugget DB, Gillespies WD, Rodgers JH, Cooper CM (1998) Comparative toxicity of chlordane, chlorpirifos and aldicarb to four aquatic testing organisms. Arch Environ Contam Toxicol 34:152–157. https://doi.org/10.1007/s002449900299

    Article  CAS  Google Scholar 

  • Moore MT, Schulz R, Cooper CM, Smith Jr S, Rodgers Jr JH (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827-835. https://doi.org/10.1016/S0045-6535(01)00189-8

  • Moore DRJ, Teed RS, Greer CD, Solomon KR, Giesy JP (2014) Refined Avian Risk Assessment for Chlorpyrifos in the United States. In: Giesy J, Solomon K (eds) Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States, Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 231. Springer, New York, pp 163–217. https://doi.org/10.1007/978-3-319-03865-0_6

    Chapter  Google Scholar 

  • Morgan M, Sheldon L, Croghan C, Jones PA, Robertson GL, Chuang JC, Wilson NK, Lyu CW (2005) Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J Expo Sci Environ Epidemiol 15:297–309. https://doi.org/10.1038/sj.jea.7500406

    Article  CAS  Google Scholar 

  • Nikolenko AG, Amirkhanov DV (1993) Comparative hazardousness of various types of insecticides to soil algae. Eurasian Soil Sci 25:103–110

    Google Scholar 

  • NRA (2000) Review of Chlorpyrifos – Environmental Assessment (Section 6). National Registration Authority for Agricultural and Veterinary Chemicals, Australia

    Google Scholar 

  • Özcan Oruç E (2010) Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest Biochem Physiol 96:160–166. https://doi.org/10.1016/j.pestbp.2009.11.005

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Fernandes RM, Soares AMVM, Barbosa IR (2008) Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo Region of Portugal. Bull Environ Contam Toxicol 81:485–489. https://doi.org/10.1007/s00128-008-9517-3

    Article  CAS  Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. In: Ware GW (ed) Reviews of Environmental Contamination and Toxicology, vol 131. Springer, New York, pp 1–150

    Chapter  Google Scholar 

  • Roberts DM, Aaron CK (2007) Management of acute organophosphorus pesticide poisoning. BMJ 334(7594):629–634. https://doi.org/10.1136/bmj.39134.566979.BE

    Article  CAS  Google Scholar 

  • Sherrard RM, Murray-Gulde CL, Rodges JH, Shah YT (2002) Comparative toxicity of chlorothalonil and chlorpyrifos: Ceriodaphnia dubia and Pimephales promelas. Environ Toxicol 17:503–512. https://doi.org/10.1002/tox.10091

    Article  CAS  Google Scholar 

  • Solomon KR, Giesy JP, Kendall RJ, Best LB, Coats JR, Dixon KR, Hooper MJ, Kenaga EE, McMurry ST (2001) Chlorpyrifos: ecotoxicological risk assessment for birds and mammals in corn agroecosystems. Hum Ecol Risk Assess 7:497–632. https://doi.org/10.1080/20018091094510

    Article  CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Stahr HM (1990) Application of the microtox system to assess the toxicity and their hydrolysis metabolites. Bull Environ Contam Toxicol 44:254–259. https://doi.org/10.1007/BF01700144

    Article  CAS  Google Scholar 

  • Thomas CN, Mansingh A (2002) Bioaccumulation, elimination, and tissue distribution of chlorpyrifos by Red Hybrid Tilapia in fresh and brackish waters. Environ Technol 23:1313–1323. https://doi.org/10.1080/09593332308618324

    Article  CAS  Google Scholar 

  • Tomlin C (2000) The Pesticide Manual: A World Compendium Farnham, 12th edn. British Crop Protection Council, Surrey, UK

    Google Scholar 

  • United Nations (ed) (2011) Globally Harmonized System of classification and labelling of chemicals (GHS), 4th edn. United Nations, New York and Geneva

    Google Scholar 

  • USEPA (1999) Registration eligibility science chapter for chlorpyrifos: fate and environmental risk assessment chapter. United States Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organism. Unites States Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (2008) Registration review-preliminary problem formulation for ecological risk and environmental fate, endangered species and drinking water assessments for chlorpyrifos. United Sates Environmental Protection Agency. Office of Pesticide Programs, Whashington

    Google Scholar 

  • USEPA (2011) Revised chlorpyrifos preliminary registration review drinking water assessment. United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Washington, DC. PC Code 059101

  • Van Wijngaarden RPA, Leeuwangh P (1989). Relationship between toxicity in laboratory and pond: an ecotoxicological study with chlorpyrifos. In: Proceedings of the International Symposium on Crop Protection (Mededelingen van de Faculteit Landbouwwentenschappen) vol 54. Rijksuniversiteit Gent, Belgium, pp 1061-1069

  • Van Wijngaarden R, Leeuwangh P, Lucassen WGH, Romjin K, Ronday R, Van der Velde R, Willengenburg W (1993) Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bull Environ Contam Toxicol 51:716–723. https://doi.org/10.1007/BF00201650

    Article  Google Scholar 

  • Varó I, Navarro JC, Amat F, Guilhermino L (2002) Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 48:563-569. https://doi.org/10.1016/S0045-6535(02)00075-9

  • Ventura C, Ramos Nieto MR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C, Núñez M (2016) Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 156:1–9. https://doi.org/10.1016/j.jsbmb.2015.10.010

    Article  CAS  Google Scholar 

  • Wang J, Wang J, Zhu L, Xie H, Shao B, Houet X (2014) The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology 23:1858–1869. https://doi.org/10.1007/s10646-014-1321-8

    Article  CAS  Google Scholar 

  • Wightwick A, Allinson G (2007) Pesticide residues in victorian waterways: a review. Aust J Ecotoxicol 13:91–112

    CAS  Google Scholar 

  • Wood B, Stark JD (2002) Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays. Ecotoxicol Environ Safety 53:273–280. https://doi.org/10.1006/eesa.2002.2210

    Article  CAS  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegr 62:51–56. https://doi.org/10.1016/j.ibiod.2007.12.001

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Zhong G, Li J, Zhang G, Covaci A (2017) Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: implication for human exposure. Environ Pollut 229:668–678. https://doi.org/10.1016/j.envpol.2017.06.089

    Article  CAS  Google Scholar 

  • Yang G, Chen C, Wang Y, Peng Q, Zhao H, Guo D, Wang Q, Qian Y (2017) Mixture toxicity of four commonly used pesticides at different effect levels to the epigeic earthworm, Eisenia fetida. Ecotoxicol Environ Safety 142:29–39. https://doi.org/10.1016/j.ecoenv.2017.03.037

    Article  CAS  Google Scholar 

  • Zalizniak L, Nugegoda D (2006) Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotoxicol Environ Safety 64:207–214. https://doi.org/10.1016/j.ecoenv.2005.03.015

    Article  CAS  Google Scholar 

  • Zhang X, Shen Y, Yu X, Liu X (2012) Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Ecotoxicol Environ Safety 78:276–280. https://doi.org/10.1016/j.ecoenv.2011.11.036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ecotoxicology Laboratory at the Department of Biotechnology of the School of Agricultural Engineering and Natural Environment (ETSIAMN) of the Polytechnic University of Valencia (Spain), and Universidad de San Buenaventura Cartagena and Universidad de Cartagena (Colombia). A special thanks to my friend and great Microbiologist Howard Junca for his advice and recommendations, as well as to the laboratory assistants for their efforts and collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Jaramillo-Colorado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License, which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverri-Jaramillo, G., Jaramillo-Colorado, B., Sabater-Marco, C. et al. Acute toxicity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol alone and in combination using a battery of bioassays. Environ Sci Pollut Res 27, 32770–32778 (2020). https://doi.org/10.1007/s11356-020-09392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09392-x

Keywords

Navigation