Skip to main content

Advertisement

Log in

Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akladious SA, Abbas SM (2012) Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. Afr J Biotechnol 11:8672–8683

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Anastasi A, Prigione V, Cas L, Casieri L, Varese GC (2009) Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World J Microbiol Biotechnol 25:1363–1374

    Article  CAS  Google Scholar 

  • Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G (2011) Burkholderia fungorum DBT1: a promising, bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319:11–18

    Article  CAS  Google Scholar 

  • Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manage 153:121–131

    Article  CAS  Google Scholar 

  • Argumedo-Delira R, Alejandro Alarcón A, Ferrera-Cerrato R, Almaraz JJ, Peña-Cabriales JJ (2012) Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene. J Environ Manage 95:S291–S299

    Article  CAS  Google Scholar 

  • Arun A, Eyini M (2011) Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi. Bioresource Technol 102:8063–8070

    Article  CAS  Google Scholar 

  • Awodele O, Akintonwa A, Olayemi SO, Anyakora C, Afolayan GO, Olofinnade AT, Smith SI, Omonigbehin EA, Coker HAB (2010) Mutagenic screening of crude oil fractions using modified Ames test and Allium cepa (Linn) assay. Am J Pharmacol Toxicol 5:1–8

    Article  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenèz P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190

    Article  CAS  Google Scholar 

  • Carrera LV (2010) Two ex situ fungal technologies to treated contaminated soil. Ph. D. Thesis, The University of Helsinki, pp 47–50

    Google Scholar 

  • Carvalho MB, Martins I, Leitão MC, Garcia H, Rodrigues C, San Romão V, McLellan I, Hursthouse A, Silva Pereira C (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36:1249–1256

    Article  CAS  Google Scholar 

  • Cobas M, Ferreira L, Tavares T, Sanromán MA, Pazos M (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91:711–716

    Article  CAS  Google Scholar 

  • Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microb Biot 21:1415–1423

    Article  CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology 154:3447–3459

    Article  CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010) Evolution and ecophysiology of the industrial producer Hypocrea jecorina (anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 5:e9191

    Article  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49:358–368

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  Google Scholar 

  • Feltrer R, Álvarez-Rodríguez ML, Barreiro C, Godio RP, Coque J-R (2010) Characterization of a novel 2,4,6-trichlorophenolinducible gene encoding chlorophenol O-methyltransferase from Trichoderma longibrachiatum responsible for the formation of chloroanisoles and detoxification of chlorophenols. Fungal Genet Biol 47:458–467

    Article  CAS  Google Scholar 

  • Fijalkowski K, Kacprzak M, Bien J, Janecka B (2008) The enhanced bioremediation of soil contaminated with high concentration of diesel oil. Proceeding of the 7th International Conference of Environmental Engineering, Vilnius, Lithuania, pp 126–133

    Google Scholar 

  • Firdaus-e-Bareen, Shafiq M, Jamil S (2012) Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J Hazard Mater 237–238:186–193

    Article  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewater: a review. Bioresource Technol 79:251–262

    Article  CAS  Google Scholar 

  • Gestel KV, Mergaert J, Swingsb J, Coosemansa J, Ryckeboera J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

    Article  Google Scholar 

  • Giridhar Babu A, Shea P, Oh B-T (2014) Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Sci Total Environ 476–477:561–567

    Article  Google Scholar 

  • Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (2014) Biotechnology and biology of Trichoderma. Elsevier, Waltham (MA, USA), Kidlington (Oxford, UK) and Amsterdam (The Netherlands)

    Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108:2030–2040

    Article  CAS  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea. Part I. The green-spored species. Stud Mycol 63:1–91

    Article  Google Scholar 

  • Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW, Yang H-S, Lee T-S (2008) Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36:114–120

    Article  CAS  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9:753–763

    Article  Google Scholar 

  • Lee H, Jang Y, Choi Y-S, Kim M-J, Lee J, Lee H, Hong J-H, Lee Y, Kim G-H, Kim J-J (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbial Meth 97:56–62

    Article  CAS  Google Scholar 

  • Lindeberg G (1948) On the occurrence of polyphenol oxidases in soilinhabiting basidiomycetes. Physiol Plantarum 1:196–205

    Article  CAS  Google Scholar 

  • Lopez MJ, Vargas-García MC, Suárez-Estrella F, Nichols NN, Dien BS, Moreno J (2007) Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb Technol 40:794–800

    Article  CAS  Google Scholar 

  • Ma X-K, Ding N, Peterson EC (2015) Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation 26:259–269

    Article  CAS  Google Scholar 

  • Mancera-Lòpez ME, Esparza-García F, Chávez-Gòmez B, Rodríguez-Vázquez R, Saucedo-Castañeda G, Barrera-Cortés J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeter Biodegr 61:151–160

    Article  Google Scholar 

  • McKee RH, Plutnick RT (1989) Carcinogenic potential of gasoline and diesel engine oils. Fundam Appl Toxicol 13:545–553

    Article  CAS  Google Scholar 

  • Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel spiked soil amended with Trichoderma ressei using sole-carbon source utilization profiles. World J Microbiol Biotechnol 25:1175–1180

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Chehregani A, Zafari D (2009) Identification of petroleum resistant plants and rhizospheral fungi for phytoremediation petroleum contaminated soils. J Japan Petrol Inst 52:198–204

    Article  CAS  Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013) Trichoderma: biology and applications. CABI, Wallingford (UK) and Boston (MA, USA)

    Book  Google Scholar 

  • Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Intern Biodeter Biodeg 56:197–206

    Article  CAS  Google Scholar 

  • Okoh AI, Trejo-Hernandez MR (2006) Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. African J Biotechnol 5:2520–2525

    CAS  Google Scholar 

  • Onofre SB, Steilmann P (2012) Phenoloxidases produced by endophytic fungi isolated from Baccharis Dracunculifolia D. C. (Asteraceae). Resources Environ 2:271–274

    Article  Google Scholar 

  • Oros-Sichler M, Gomes NCM, Neuber G, Smalla K (2006) A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbial Met 65:63–75

    Article  CAS  Google Scholar 

  • Rosales E, Pérez-Paz A, Vázquez X, Pazos M, Sanromán MA (2012) Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess Biosyst Eng 35:851–855

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Zafar SI (2009) Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. J Hazard Mater 168:406–415

    Article  CAS  Google Scholar 

  • Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Divers 55:77–108

    Article  Google Scholar 

  • Schnick RA (1988) The impetus to register new therapeutics for aquaculture. Prog Fish-Cult 50:190–196

    Article  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Thrichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  Google Scholar 

  • Sivasamy A, Sundarabal N (2011) Biosorption of azo dye by Aspergillus niger and Trichoderma sp. fungal biomasses. Curr Microbiol 62:351–357

    Article  CAS  Google Scholar 

  • Smith JR (1960) The influence of antagonistic fungi on Thielaviopsis basicola (Berk. et Br.) Ferraris. Acta Bot Neerl 9:59–118

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tan KH (2005) Soil sampling, preparation and analysis, 2nd edn. Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Tanzadeh J, Haghighat A (2014) Aplication of Bacillus subtilis in degradation of diesel oil at polluted soil in Gilan. J Curr Res Sci 2:971–976

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Environ Policy 15:541–550

    Article  CAS  Google Scholar 

  • UNI-EN ISO 16703 (2011) Soil quality - Determination of content of hydrocarbon in the range C10 to C40 by gas chromatography. European Standard

  • US EPA, Method 3510C, (1996) Separatory funnel liquid–liquid extraction. <http:// www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3510c.pdf>

  • US EPA, Method 8270D, (2007) Semivolatile Organic Compounds by GC/MS. <http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/8270d.pdf>

  • Van Elsas JD, Duarte GF, Keijzer-Wolters A, Eric Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbial Met 43:133–151

    Article  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, San Diego, Calif, pp 315–322

    Google Scholar 

  • Yabuki T, Miyazaki K, Okuda T (2014) Japanese species of the Longibrachiatum Clade of Trichoderma. Mycoscience 55:196–212

    Article  Google Scholar 

  • Yao L, Teng Y, Luo Y, Christie P, Ma W, Liu F, Wu Y, Luo Y, Li Z (2015) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil. Biorem J 19:9–17

    Article  Google Scholar 

  • Zafra G, Moreno-Montaño A, Ablasón ÁE, Cortés-Espinosa DV (2015) Degradation of polycyclic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci Pollut Res 22:1034–1042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out as a part of the Microbially-Stimulated Wildfire Impact Remediation (MICROS-WILDFIRE) project, with financial support from the University of Verona and Eurovix S.p.A. (Viale Enrico Mattei 17 24060 Entratico BG Italy) under the Joint Project 2011 initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Lampis or Giovanni Vallini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreolli, M., Lampis, S., Brignoli, P. et al. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 23, 9134–9143 (2016). https://doi.org/10.1007/s11356-016-6167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6167-6

Keywords

Navigation