Skip to main content

Advertisement

Log in

Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agüera A, Pérez Estrada LA, Ferrer I, Thurman EM, Malato S, Fernández-Alba AR (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Mass Spectrom 40:908–915

    Article  Google Scholar 

  • APHA (1992) Standard methods for the examination of the water and wastewater, 18th edn. American Water Works Association, Washington, DC

    Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77(5):445–459

    Article  CAS  Google Scholar 

  • Bartels P, Von Tümpling W (2007) Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci Total Environ 374:143–155

    Article  CAS  Google Scholar 

  • Blanco-Galvez J, Fernández-Ibánez P, Malato-Rodríguez S (2007) Solar photocatalytic detoxification and disinfection of water: recent overview. J Sol Energy Eng Trans Asme 129:4–15

    Article  CAS  Google Scholar 

  • Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci 65:320–341

    Article  CAS  Google Scholar 

  • Boscá F, Miranda MA, Vanó L, Vargas F (1990) New photodegradation pathways for Naproxen, a phototoxic non-steroidal anti-inflammatory drug. J Photochem Photobiol A Chem 54:131–134

    Article  Google Scholar 

  • Boscá F, Marín ML, Miranda MA (2001) Photoreactivity of the nonsteroidal anti-inflammatory 2-arylpropionic acids with photosensitizing side effects. Photochem Photobiol 74:637–655

    Article  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 67:197–205

    Article  CAS  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59(3):309–315

    Article  CAS  Google Scholar 

  • Cosa G (2004) Photodegradation and photosensitization in pharmaceutical products: assessing drug phototoxicity. Pure Appl Chem 76:263–275

    Article  CAS  Google Scholar 

  • De la Cruz N, Dantas RF, Gimenez J, Esplugas S (2013) Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: solar and artificial light. Appl Catal B Environ 130:249–256

    Article  Google Scholar 

  • Deegan AM, Shaik B, Nolan K, Urell K, Oelgemöller M, Tobin J, Morrissey A (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8:649–666

    Article  CAS  Google Scholar 

  • Encinas S, Bosca F, Miranda MA (1998) Photochemistry of 2,6-dichlorodiphenylamine and 1-chlorocarbazole, the photoactive chromophores of diclofenac, meclofenamic acid and their major photoproducts. Photochem Photobiol 68(5):640–645

    CAS  Google Scholar 

  • Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lützhoft HCH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–394

    Article  Google Scholar 

  • Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  • Hermosilla D, Merayo N, Gascó A, Blanco A (2015) The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review. Environ Sci Pollut Res 22:168–191

    Article  CAS  Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2014a) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47

    Article  CAS  Google Scholar 

  • Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2014b) Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environ Chem 11:51–62

    Article  CAS  Google Scholar 

  • Kanakaraju D, Kockler J, Motti CA, Glass BD, Oelgemöller M (2015a) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl Catal B Environ 166–167:45–55

    Article  Google Scholar 

  • Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2015b) TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere 139:579–588

    Article  CAS  Google Scholar 

  • Kaur A, Umar A, Kansal SK (2016) Heterogeneous photocatalytic studies of analgesics and non-steroidal anti-inflammatory drugs. Appl Catal A Gen 510:134–155

    Article  CAS  Google Scholar 

  • Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S (2010) Aqueous photocatalytic oxidation of amoxicillin. Catal Today 151:39–45

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417

    Article  CAS  Google Scholar 

  • Kockler J, Kanakaraju D, Glass BD, Oelgemöller M (2012) Photochemical and photocatalytic degradation of diclofenac and amoxicilin using natural and simulated sunlight. J Sustain Sci Manag 7:23–29

    CAS  Google Scholar 

  • Kosjek T, Heath E, Petrović M, Barceló D (2007) Mass spectrometry for identifying pharmaceutical biotransformation products in the environment. Trends Anal Chem 26:1076–1085

    Article  CAS  Google Scholar 

  • Kumar A, Guo C, Sharma G, Pathania D, Naushad M, Kalia S, Dhiman P (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination and mineralization of 4-chlorophenol from simulated waste water. RSV Adv 6:13251–13263

    Article  CAS  Google Scholar 

  • Ljubas D (2005) Solar photocatalysis – a promising step in drinking water treatment. Energy 30:1699–1710

    Article  CAS  Google Scholar 

  • Loiselle S, Vione D, Minero C, Maurino V, Tognazzi A, Dattilo AM, Rossi C, Luca Bracchini L (2012) Chemical and optical phototransformation of dissolved organic matter. Water Res 46:3197–3207

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15

    Article  CAS  Google Scholar 

  • Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107:110–118

    Article  Google Scholar 

  • Méndez-Arriaga F, Esplugas S, Gimenez J (2008a) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Article  Google Scholar 

  • Méndez-Arriaga F, Gimenez J, Esplugas S (2008b) Photolysis and TiO2 photocatalytic treatment of naproxen: degradation, mineralization, intermediates and toxicity. J Adv Oxid Technol 11:435–444

    Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Moore DE, Roberts-Thompson S, Zhen D, Duke CC (1990) Photochemical studies on the anti-inflammatory drug diclofenac. Photochem Photobiol 52:685–690

    Article  CAS  Google Scholar 

  • Murphy S, Saurel C, Morrissey A, Tobin J, Oelgemöller M, Nolan K (2012) Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals. Appl Cat B: Environ 119(120):156–165

  • Nasuhoglu D, Yargeau V, Berk D (2011) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λ = 254 nm). J Hazard Mater 186:67–75

    Article  CAS  Google Scholar 

  • Oppenlander T (2003) Photochemical purification of water and air-advanced oxidation processes (AOPs): principles, reaction mechanisms, reactor concepts. Wiley-VCH, New York

    Google Scholar 

  • Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat Sci 65:342–351

    Article  CAS  Google Scholar 

  • Pereira JHOS, Reis AC, Queirós D, Nunes OC, Borges MT, Vilar VP, Boaventura RAR (2013) Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci Total Environ 463–464:274–283

    Article  Google Scholar 

  • Peuravuori J (2012) Aquatic photochemistry of diclofenac in the presence of natural dissolved organic chromophoric material and nitrate. Int J Environ Anal Chem 92:1470–1492

    Article  CAS  Google Scholar 

  • Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Aguera A, Puma GL, Malato S (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 211:131–137

    Article  Google Scholar 

  • Priya MH, Madras G (2006) Kinetics of photocatalytic degradation chlorophenol, nitrophenol and their mixtures. Ind Eng Chem Res 45:482–486

    Article  CAS  Google Scholar 

  • Rioja N, Zorita S, Peñas FJ (2016) Effect of water matrix on photocatalytic degradation and general kinetic modelling. Appl Catal B Environ 180:330–335

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43:979–988

    Article  CAS  Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photochem Photobiol C: Photochem Rev 9:157–170

    Article  CAS  Google Scholar 

  • Sirtori C, Agüera A, Gernjak W, Malato S (2010) Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res 44:2735–2744

    Article  CAS  Google Scholar 

  • Trovó AG, Nogueira RFP, Agüera A, Fernandez-Alba AR, Malato S (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process—chemical and toxicological assessment. Water Res 45:1394–1402

    Article  Google Scholar 

  • Zhang YJ, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  • Zhang N, Liu GG, Liu HJ, Wang YL, He ZW, Wang G (2011) Diclofenac photodegradation under simulated sunlight: effects of different forms of nitrogen and kinetics. J Hazard Mater 192:411–418

    CAS  Google Scholar 

  • Ziylan A, Ince NH (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J Hazard Mater 187:24–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the James Cook University for their financial support (FAIG award 2009 and GRS awards 2011 and 2012). D.K. also thanks the Malaysian Government for a University Doctorate Training Award. The authors also wish to thank Evonik industries for the donation of Titanium dioxide P25 Aeroxide and S. Boyle (AIMS Analytical Services) for DOC analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devagi Kanakaraju or Michael Oelgemöller.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakaraju, D., Motti, C.A., Glass, B.D. et al. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices. Environ Sci Pollut Res 23, 17437–17448 (2016). https://doi.org/10.1007/s11356-016-6906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6906-8

Keywords

Navigation