Skip to main content
Log in

Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The toxicity of four zinc oxide nanoparticles (i.e., spheric ZnO-30, spheric ZnO-50, columnar ZnO-90, and hexagon rod-like ZnO-150) to the seed germination of Chinese cabbage (Brassica pekinensis L.) was investigated in this study. The results showed that zinc oxide nanoparticles (nano-ZnOs) did not affect germination rates at concentrations of 1–80 mg/L but significantly inhibited the root and shoot elongation of Chinese cabbage seedlings, with the roots being more sensitive. The inhibition was evident mainly during seed incubation rather than the seed soaking process. Both the production of free hydroxyl groups (·OH) and the Zn bioaccumulation in roots or shoots resulted in toxicity of nano-ZnOs to Chinese cabbage seedlings. The toxicity of nano-ZnOs was affected significantly by their primary particle sizes in the minimum dimensionality, but large columnar ZnO-90 and small spherical ZnO-50 had comparable toxicities. Therefore, both the particle size and morphology affected the toxicity of nano-ZnOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai W, Zhang ZY, Tian WJ, He X, Ma YH, Zhao YL, Chai ZF (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654. doi:10.1007/s11051-009-9740-9

    Article  CAS  Google Scholar 

  • Chang X, Zu Y, Zhao Y (2011) Size and structure effects in the nanotoxic response of nanomaterials. Chin Sci Bull 56:108–118. doi:10.1360/972010-1640

    Article  Google Scholar 

  • Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - Effects of size and crystalline structure. Chemosphere 90:1083–1090. doi:10.1016/j.chemosphere.2012.09.013

    Article  CAS  Google Scholar 

  • Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589. doi:10.1016/j.tplants.2011.08.003

    Article  CAS  Google Scholar 

  • Dimitrios S, Saion KS, Jason CW (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi:10.1007/s11051-013-1829-5

    Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi:10.1021/es071445r

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955. doi:10.1016/j.jhazmat.2010.11.018

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi:10.1021/es9015553

    Article  CAS  Google Scholar 

  • Hao LH, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotox Environ Safe 80:103–110. doi:10.1016/j.ecoenv.2012.02.017

    Article  CAS  Google Scholar 

  • Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci-China 21:1459–1466. doi:10.1016/s1001-0742(08)62440-7

    Article  CAS  Google Scholar 

  • Hu XG, Zhou QX (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    Google Scholar 

  • Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356. doi:10.1021/es9010543

    Article  CAS  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YJ, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. doi:10.1021/es048729l

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781. doi:10.1021/es103031a

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi:10.1021/es1041892

    Article  CAS  Google Scholar 

  • Kool PL, Ortiz MD, van Geste CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719. doi:10.1016/j.envpol.2011.05.021

    Article  CAS  Google Scholar 

  • Kordon H (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26:247–251. doi:10.1080/00219266.1992.9655281

    Article  Google Scholar 

  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:1–12. doi:10.1186/1743-8977-6-14

    Article  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585. doi:10.1021/es800422x

    Article  CAS  Google Scholar 

  • Liu TF, Wang T, Sun C, Wang YM (2009a) Single and joint toxicity of cypermethrin and copper on Chinese cabbage (Pakchoi) seeds. J Hazard Mater 163:344–348. doi:10.1016/j.jhazmat.2008.06.099

    Article  CAS  Google Scholar 

  • Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li YF, Li B, Chai ZF, Wu G, Chen CY (2009b) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9:6335–6343. doi:10.1166/jnn.2009.1320

    Article  CAS  Google Scholar 

  • Luna-delRisco M, Orupold K, Dubourguier HC (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189:603–608. doi:10.1016/j.jhazmat.2011.02.085

    Article  CAS  Google Scholar 

  • Ma YH, Kuang LL, He X, Bai W, Ding YY, Zhang ZY, Zhao YL, Chai ZF (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279. doi:10.1016/j.chemosphere.2009.10.050

    Article  CAS  Google Scholar 

  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Canorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480. doi:10.1016/j.envpol.2011.03.013

    Article  CAS  Google Scholar 

  • Mittal A, Sara UVS, Ali A, Aqil M (2008) The effect of penetration enhancers on permeation kinetics of nitrendipine in two different skin models. Biol Pharm Bull 31:1766–1772. doi:10.1248/bpb.31.1766

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi:10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Peterson CA, Lefcounrt BEM (1990) Development of endodermal casparian bands and xylem in lateral roots of broad bean. Can J Bot 68:2729–2735. doi:10.1016/j.envpol.2013.11.014

    Article  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768. doi:10.1021/es102501z

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agr Food Chem 59:3485–3498. doi:10.1021/jf104517j

    Article  CAS  Google Scholar 

  • Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7:34197–34197. doi:10.1371/journal.pone.0034197

    Article  Google Scholar 

  • Wang B, Feng WY, Wang TC, Guang J, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123. doi:10.1016/j.toxlet.2005.08.007

    Article  CAS  Google Scholar 

  • Wang Z, Xiao BD, Song LR, Wu XQ, Zhang JQ, Wang CB (2011) Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 20:803–814. doi:10.1016/j.toxlet.2005.08.007

    Article  CAS  Google Scholar 

  • Wang ZY, Xie XY, Zhao J, Liu XY, Feng WQ, White JC, Xing BS (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441. doi:10.1021/es204212z

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452. doi:10.1016/j.scitotenv.2011.01.015

    Article  CAS  Google Scholar 

  • Xu ZQ, Zhou QX, Liu WT (2009) Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China. J Environ Sci-China 21:1598–1606. doi:10.1016/s1001-0742(08)62461-4

    Article  CAS  Google Scholar 

  • Xu M, Fujita D, Kajiwara S, Minowa T, Li X, Takemura T, Iwai H, Hanagata N (2010) Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials 31:8022–8031. doi:10.1016/j.biomaterials.2010.06.022

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132. doi:10.1016/j.toxlet.2005.03.003

    Article  CAS  Google Scholar 

  • Zhai T, Xie SL, Zhao YF, Sun XF, Lu XH, Yu MH, Xu FM, Tong YX (2012) Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. Crystengcomm 14:1850–1855. doi:10.1039/c1ce06013a

    Article  CAS  Google Scholar 

  • Zhang WX, Karn B (2005) Nanoscale environmental science and technology: challenges and opportunities. Environ Sci Technol 39:94A–95A. doi:10.1021/es053197+

    Article  CAS  Google Scholar 

  • Zhang L, Somasundaran P, Mielczarski J, Mielczarski E (2002) Adsorption mechanism of n-dodecyl-β-D-maltoside on alumina. J Colloid Interface Sci 256:16–22. doi:10.1006/jcis.2001.7858

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212. doi:10.1016/j.watres.2007.11.036

    Article  CAS  Google Scholar 

  • Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841. doi:10.1021/es2027295

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi:10.1039/b805998e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41071211, 41173101, and 41301337).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Ying Cai or Ce-Hui Mo.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Zhao, HM., Li, YW. et al. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22, 10452–10462 (2015). https://doi.org/10.1007/s11356-015-4172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4172-9

Keywords

Navigation