Skip to main content

Advertisement

Log in

Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background

Chlorobenzoic acids (CBA) are intermediate products of the aerobic microbial degradation of PCB and several pesticides. This study explores the feasibility of using basket willows, Salix viminalis, to remove 4-CBA from polluted sites, which also might stimulate PCB degradation.

Methods

The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different pH levels. The concentration of 4-CBA was tracked over time and quantified by HPLC.

Results and discussion

At the low level of 4-CBA (5 mg/L), willows removed 70% (pH 4.2) to 90% (pH 6.8), while 48% (pH 4.2) to 52% (pH 6.8) of the water was transpired. At the high 4-CBA level (50 mg/L), the pH varied between 4.4 and 4.6, and 10% to 30% of 4-CBA was removed, but only 5% to 9% of the water. In sterile cell suspensions, removal of 4-CBA by fresh biomass was much higher than removal by dead biomass.

Conclusions

The results indicate that 4-CBA is toxic to willow trees at 50 mg/L. The removal of 4-CBA from solution is by both passive processes (uptake with water, sorption to plant tissue) and metabolic processes of the plants.

Recommendations and outlook

Plants, such as willow trees, might assist in the degradation of PCB and their degradation products CBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–266

    Article  CAS  Google Scholar 

  • Aylward GH, Findlay TJV (1981) Chemical data (Datensammlung Chemie), 2nd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Baggi G, Zanagarossi M (1995) Inhibition by meta-substituted dichlorobenzoates in Alcaligenes denitrificans which grows on 4-chlorobenzoate. Ann Microbiol Enzymol 45:185–189

    CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Bartels I, Knackmuss H-J, Reineke W (1984) Suicide inactivation of catechol 2, 3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  Google Scholar 

  • Blasko R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235

    Article  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potencial to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  Google Scholar 

  • Briggs GG, Rigitano RLO, Bromilow RH (1987) Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, Mc Farlane JC (eds) Plant contamination—Modeling and simulation of organic chemical processes. CRC Press., Inc. Lewis publishers, USA, pp 36–67

    Google Scholar 

  • Ciucani G, Mosbæk H, Trapp S (2004) Uptake of tributyltin into willow trees. Environ Sci Pollut Res 11:267–272

    Article  CAS  Google Scholar 

  • Crowley DE, Brennerova MV, Irwin C, Brenner V, Focht DD (1996) Rhizosphere effect on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Ecol 20:79–89

    Article  CAS  Google Scholar 

  • Dionysiou DD, Suidan MT, Bekou E, Baudin I, Laine J-M (2000) Effect of ionic strength and hydrogen peroxide on photocatalic degradation of 4-chlorobenzoic acid in water. Appl Catal B: Environ 26:153–171

    Article  CAS  Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefäβpflanzen Mitteleuropas (Indicator values of Central European vascular plants). Erich Goltze KG, Göttingen

    Google Scholar 

  • Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279

    Article  CAS  Google Scholar 

  • Focht DD (1995) Strategies for the improvement of aerobic metabolism of chlorinated biphenyls. Curr Opin Biotechnol 6:341–346

    Article  CAS  Google Scholar 

  • Frohne D, Jensen U (1985) Systematik des Pflanzenreiches unter besonderer berücksichtigung chemischer Merkmale und pflanzlicher Drogen, 3rd edn. Gustav Fischer, Stuttgart

    Google Scholar 

  • Haby PA, Crowley DE (1996) Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates. J Environ Qual 25:304–310

    Article  CAS  Google Scholar 

  • Kleier DA (1988) Phloem mobility of xenobiotics. Plant Physiol 86:803–810

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    Article  CAS  Google Scholar 

  • Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142

    Article  CAS  Google Scholar 

  • Mackova M, Barriault D, Francova K, Sylvestre M, Möder M, Vrchotova B, Lovecka P, Najmanova J, Demnerova K, Novakova M, Rezek J, Macek T (2006) Phytoremediation of polychlorinated biphenyls. In: Mackova M, Dowling DN, Macek T (eds) Phytoremediation rhizoremediation. Springer, Dordrecht, pp 143–169

    Chapter  Google Scholar 

  • Magara Y, Aizawa T, Matumote N, Souna F (1994) Degradation of pesticides by chlorination during water purification. Wat Sci Technol 30:119–128

    CAS  Google Scholar 

  • Marks TS, Smith ARW, Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48:1020–1025

    CAS  Google Scholar 

  • Sandman ER, Loos MA (1984) Enumeration of 2,4-D degrading microorganisms in soil and crop plant rhizospheres using indicator media: high population associated with sugarcane (Saccharum officinarum). Chemosphere 13:1073–1084

    Article  Google Scholar 

  • Siciliano SD, Germida JJ (1999) Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biol Biochem 31:299–305

    Article  CAS  Google Scholar 

  • ISO International Oraganization for Standardization (1997) Water quality—fresh water algal growth test with Scenedesmus subspicatus and Raphidocelis subcapitata. International Organization for Standardization, Genova, ISO Standards 8692

    Google Scholar 

  • Stratford J, Wright MA, Reineke W, Mokross H, Havel J, Knowles CJ, Robinson GK (1996) Influence of chlorobenzoates on utilization of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacteria strains. Arch Microbiol 165:213–218

    Article  CAS  Google Scholar 

  • Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    Article  CAS  Google Scholar 

  • Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21:203–206

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  Google Scholar 

  • Trapp S, Miglioranza KSB, Mosbæk H (2001) Sorption of lipophilic organic compounds to wood and implications for their environmental fate. Environ Sci Technol 35:1561–1566

    Article  CAS  Google Scholar 

  • Trapp S, Ciucani G, Sismilich M (2004) Toxicity of tributyltin to willow trees. Environ Sci Pollut Res 11:327–330

    Article  CAS  Google Scholar 

  • Trapp S, Ucisik AS, DelChicca Romano P, Larsen M (2007) The role of plants and bacteria in phytoremediation—kinetic aspects. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. NATO science series, IV. Earth and environmental sciences—vol. 76. Springer, Dordrecht, pp 41–49

    Chapter  Google Scholar 

  • Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ Toxicol Chem 25:2455–2460

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity and removal of 2, 4-dichlorophenol in willow trees. Environ Toxicol Chem 26:1165–1171

    Article  CAS  Google Scholar 

  • UNEP United Nations Environmental Program (2007) Stockholm convention on persistent organic pollutants (POPs). Available: http://www.pops.int/ [accessed 15 Jan 2010]

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sánches-Contreras M, Lloret J, de Cárcer DA, Oruezábal RI, Balaños L, Macek T, Karlson U, Dowling DN, Martín M, Rivilla R (2004) Polychlorinated biphenyl rhizoremedation by Pseudomonas fluorescens F113 derovates, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Wang C, Zhou XS (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou P (2005a) Phytotoxicity of cyanide to weeping willow trees. Environ Sci Pollut Res 12:109–113

    Article  CAS  Google Scholar 

  • Yu XZ, Zhou PH, Zhou XS, Liu YD (2005b) Cyanide removal by Chinese vegetation. Quantification of the Michaelis-Menten kinetics. Environ Sci Pollut Res 12:227–232

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou P, Peng X, Cao X (2006) Response of weeping willows to linear alkylbenzene sulfonate. Chemosphere 64:43–48

    Article  CAS  Google Scholar 

  • Zaitsev GM, Karasevich YN (1981) Utilization of 4-chlorobenzoic acid by Arthrobacteria globiformis. Mikrobiologiya 50:423–428

    CAS  Google Scholar 

Download references

Acknowledgements

The study received financial support from the European Union 7th Framework Program of Research, project No. 245226 MAGIC PAH. Support for this research was provided by the European Union, Erasmus/Socrates program for KMs stay in Denmark and by the Grant Agency of Czech Republic project No. 203/06/0563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Trapp.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deavers, K., Macek, T., Karlson, U.G. et al. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis). Environ Sci Pollut Res 17, 1355–1361 (2010). https://doi.org/10.1007/s11356-010-0321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0321-3

Keywords

Navigation