Skip to main content

Advertisement

Log in

Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) are widely used for medical purposes, both in diagnostics as well as drug delivery, and hence are prone to release and distribution in the environment. Thus, we have explored the effects of GNPs with two distinct surface capping (citrate and PVP), and three different sizes (16, 27, and 37 nm) at 0.01-, 0.1-, and 1-mg L−1 concentrations on a predominant freshwater alga Scenedesmus obliquus in the sterile freshwater matrix. We have also investigated how an abundant metal ion from freshwater, i.e., Zn2+ ions may modulate the effects of the selected GNPs (40 nm, citrate, and PVP capped). Preliminary toxicity results revealed that gold nanoparticles were highly toxic in comparison to zinc ions alone. A significant modulation in the toxicity of Zn ions was not noticed in the presence of GNPs. In contrast, zinc ions minimized the toxicity produced by GNPs (both CIT-37 and PVP-37), despite its individual toxicity. Approximately, about 42, 33, and 25% toxicity reduction was noted at 0.05-, 0.5-, and 5-mg L−1 Zn ions, respectively, for CIT-37 GNPs, while 31% (0.05 mg L−1), 24% (0.5 mg L−1), and 9% (5 mg L−1) of toxicity reduction were noted for PVP-37 GNPs. Maximum toxicity reduction was seen at 0.05 mg L−1 of Zn ions. Abbott modeling substantiated antagonistic effects offered by Zn2+ ions on GNPs. Stability and sedimentation data revealed that the addition of zinc ions gradually induced the aggregation of NPs and in turn significantly reduced the toxicity of GNPs. Thus, the naturally existing ions like Zn2+ have an ability to modulate the toxicity of GNPs in a real-world environment scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott MB, Bathurst JC, Cunge JA, O'Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1):45–59

    Article  Google Scholar 

  • Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7):5478–5489

    Article  CAS  Google Scholar 

  • Ali M, Hashim U, Mustafa S, Man Y, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:1

    Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate–glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43(2):107–116

    Article  CAS  Google Scholar 

  • Auffan M, Bottero JY, Chaneac C, Rose J (2010) Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5(6):999–1007

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    Article  CAS  Google Scholar 

  • Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  Google Scholar 

  • Behra R, Wagner B, Sgier L, Kistler D (2015) Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aqaut Geochem 21(2):331–342

    Article  CAS  Google Scholar 

  • Bodar CW, Pronk ME, Sijm DT (2005) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Assess Manag 1:301–319

    Article  CAS  Google Scholar 

  • Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8(3):281–291

    Article  CAS  Google Scholar 

  • Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environmental Science: Nano 1(3):260–270

    CAS  Google Scholar 

  • Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

    Article  CAS  Google Scholar 

  • Campbel PGC, Stokes PM (1985) Acidification and toxicity of metals to aquatic biota. Can J Fish Aquat Sci 42(12):2034–2049

    Article  Google Scholar 

  • Chesworth J, Donkin M, Brown M (2004) The interactive effects of the antifouling herbicides irgarol 1051 and diuron on the seagrass Zostera marina (L.). Aquat Toxicol 66(3):293–305

    Article  CAS  Google Scholar 

  • Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216

    Article  CAS  Google Scholar 

  • Cumberland SA, Lead JR (2009) Particle size distribution of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:7

    Article  Google Scholar 

  • Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1(2):116–130

    Article  CAS  Google Scholar 

  • Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2014) Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37

    Article  CAS  Google Scholar 

  • Dedkova K, Bures Z, Palarcík J, Vlcek M, Kukutschova J (2014) Acute toxicity of gold nanoparticles to freshwater green algae. In: In: conference NanoCon, Nov 5the7th. Czech Republic, Brno

    Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21(11):2412–2422

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241(105):20–22

    CAS  Google Scholar 

  • Gilroy KD, Neretina S, Sanders RW (2014) Behavior of gold nanoparticles in an experimental algal–zooplankton food chain. J Nanopart Res 16(5):1–8

    Article  CAS  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):1

    Article  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Guo Y, Zhang Y, Shao H, Wang Z, Wang X, Jiang X (2014) Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal Chem 86(17):8530–8534

    Article  CAS  Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition—a review. American Journal of Experimental Agriculture 3(2):374

    Article  CAS  Google Scholar 

  • Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci Technol 24(2):220–228

    Article  CAS  Google Scholar 

  • Hitchman A, Smith GHS, Ju-Nam Y, Sterling M, Lead JR (2013) The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90(2):410–416

    Article  CAS  Google Scholar 

  • Hu J, Wang D, Forthaus BE, Wang J (2012) Quantifying the effect of nanoparticles on as (V) ecotoxicity exemplified by nano-Fe2O3 (magnetic) and nano-Al2O3. Environ Toxicol Chem 31(12):2870–2876

    Article  CAS  Google Scholar 

  • Iswarya V, Manivannan J, De A, Paul S, Roy R, Johnson J, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A (2015) Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res:1–15

  • Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquat Toxicol 178:209–221

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8(8):5153–5170

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6):1116–1122

    Article  CAS  Google Scholar 

  • Kim I, Lee BT, Kim HA, Kim KW, Kim SD, Hwang YS (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105

    Article  CAS  Google Scholar 

  • Kim K-T, Zaikova T, Hutchison JE, Tanguay RL (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133(2):275–288

    Article  CAS  Google Scholar 

  • Kumar D, Santhanam P, Ananth S, Devi AS, Nandakumar R, Prasath BB, Jeyanthi S, Jayalakshmi T, Ananthi P (2014) Effect of different dosages of zinc on the growth and biomass in five marine microalgae. Int J Fish Aquac 6(1):1–8

    Article  Google Scholar 

  • Larguinho M, Correia D, Diniz MS, Baptista PV (2014) Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels. J Nanopart Res 16(8):1–11

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, New York

    Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  Google Scholar 

  • Monteiro CM, Fonseca SC, Castro PM, Malcata FX (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from northern Portugal. J Appl Phycol 23(1):97–103

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicologiocal risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Naito W, Kamo M, Tsushima K, Iwasaki Y (2010) Exposure and risk assessment of zinc in Japanese surface waters. Sci Total Environ 408:4271–4284

    Article  CAS  Google Scholar 

  • Nur Y (2013) Gold nanoparticles: synthesis, characterisation and their effect on Pseudomonas flourescens. University of Birmingham

  • OECD (2011) Test no 201: freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals. OECD Publishing Paris

  • Omar H (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int Biodeterior Biodegrad 50(2):95–100

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Prathna T, Trivedi S, Myneni R, Raichur AM, Chandrasekaran N, Mukherjee A (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 132:34–45

    Article  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    Article  CAS  Google Scholar 

  • Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci 107(25):11194–11199

    Article  CAS  Google Scholar 

  • Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens Actuators B Chem 238:888–902

    Article  CAS  Google Scholar 

  • Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN toxicology 2013

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41(2):116–126

    Article  CAS  Google Scholar 

  • Riddhi P, Om B, Kuldeep R, Bindiya P. (2014) An incongruent upshot of gold nano particles in middle of cancer treatment with poles apart appliances. Int J Drug Dev Res

  • Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR (2011) Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218(27):4226–4233

    Article  Google Scholar 

  • Roney N. (2005). Toxicological profile for zinc. Agency for Toxic Substances and Disease Registry

  • Rout GR, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In Sustainable Agriculture. Springer Netherlands. pp. 873–884

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  • Sathishkumar M, Pavagadhi S, Mahadevan A, Balasubramanian R (2014) Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicol Environ Saf 114:232–240

    Article  Google Scholar 

  • Shellaiah M, Simon T, Sun KW, Ko FH (2016) Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens Actuators B Chem 226:44–51

    Article  CAS  Google Scholar 

  • Sposito G, Lund LJ, Chang AC (1982) Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases1. Soil Sci Soc Am J 46(2):260–264

    Article  CAS  Google Scholar 

  • Stankus DP, Lohse SE, Hutchison JE, Nason JA (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244

  • Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochemical & Photobiological Sciences 10(5):822–831

    Article  CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6(3):335–340

    Article  CAS  Google Scholar 

  • Teisseire H, Couderchet M, Vernet G (1999) Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ Pollut 106(1):39–45

    Article  CAS  Google Scholar 

  • Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  CAS  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293(1):653–659

    Article  CAS  Google Scholar 

  • Van Hoecke K, De Schamphelaere KAC, Ali Z, Zhang F, Elsaesser A, Rivera-Gil P, Parak WJ, Smagghe G, Howard CV, Janssen CR (2013) Ecotoxicity and uptake of plymer coated gold nanoparticles. Nanotoxicology 1:37–47

  • Von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630

    Article  CAS  Google Scholar 

  • Wang D, Hu J, Irons DR, Wang J (2011) Synergistic toxic effect of nano-TiO2 and As (V) on Ceriodaphnia dubia. Sci Total Environ 409(7):1351–1356

    Article  CAS  Google Scholar 

  • Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385–398

    Article  CAS  Google Scholar 

  • Wong PTS, Chau YK (1990) Zinc toxicity to freshwater algae. Toxic Assess 5(2):167–177

    Article  CAS  Google Scholar 

  • WHO (2003) Zinc in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. World Health Organization 2003. Geneva. (WHO/SDE/WSH/03.04/17). Available from: www.who.int/water_sanitation_health/dwq/chemicals/zincsum.pdf

  • Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24(3):400–413

    CAS  Google Scholar 

  • Yang WW, Miao A-J, Yang L-Y (2012) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7(3):e32300

    Article  CAS  Google Scholar 

  • Zhang H, Zhang C (2014) Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. Journal of Materials and Environmental Science 5(1):231–236

    CAS  Google Scholar 

  • Zhang X-D, Wu D, Shen X, Liu P-X, Yang N, Zhao B, Zhang H, Sun Y-M, Zhang L-A, Fan F-Y (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 6:2071–2081

    Article  CAS  Google Scholar 

  • Zeng S, Cai M, Liang H, Hao J (2012) Size-dependent colorimetric visual detection of melamine in milk at 10 ppb level by citrate-stabilized Au nanoparticles. Anal Methods 4:2499–2505

    Article  CAS  Google Scholar 

  • Zou X-Y, Xu B, Yu C-P, Zhang H-W (2013) Combined toxicity of ferroferric oxide nanoparticles and arsenic to the ciliated protozoa Tetrahymena pyriformis. Aquat Toxicol 134:66–73

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank PSG-IAS, Coimbatore, TN, India, for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Thomas D. Bucheli

Electronic supplementary material

ESM 1

(DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iswarya, V., Johnson, J., Parashar, A. et al. Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus . Environ Sci Pollut Res 24, 3790–3801 (2017). https://doi.org/10.1007/s11356-016-8131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8131-x

Keywords

Navigation