Skip to main content
Log in

Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper studied the inhibitory effect of pomegranate peel (PP) extract on the growth of Microcystis aeruginosa, the model of harmful algal blooms in aquatic environment. The allelochemicals were identified by HPLC–MS/MS from PP and tested by batch experiment through measurement of algal density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), superoxide dismutase (SOD), and malondialdehyde (MDA) contents. Results showed that both PP powder and PP extract had obvious inhibitory effect on M. aeruginosa growth. Quercetin and luteolin were identified as the allelochemicals to M. aeruginosa growth. However, the inhibitory capacity of luteolin was stronger than that of quercetin. The growth inhibition ratio of luteolin can reach up to 98.7 and 99.1% of the control on day 7 at the dosages of 7 and 10 mg/L, respectively. Moreover, the changes of Chl-a, Fv/Fm, SOD, and MDA in M. aeruginosa confirmed jointly that the allelochemicals cause inhibition of photosystem and oxidative damage to M. aeruginosa cells with the antioxidant defense system being activated, which leads to the aggravation of membrane lipid peroxidation. Thus, luteolin could be used as a promising algaecide for emergency handling of M. aeruginosa blooms. This study might provide a new direction in the management of eutrophication in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams LK, Benson EE, Staines HJ, Bremner DH, Millam S, Deighton N (1999) Effects of the lipid peroxidation products 4-hydroxy-2-nonenal and malondialdehyde on the proliferation and morphogenetic development of in vitro plant cells. J Plant Physiol 155(3):376–386

    Article  CAS  Google Scholar 

  • Akhtar S, Ismail T, Fraternale D, Sestili P (2015) Pomegranate peel and peel extracts: chemistry and food features. Food Chem 174:417–425

    Article  CAS  Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. In: Motohashi N (ed) The lutein—prevention and treatment for diseases. Transworld Research Network, India, pp 187–256

    Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52(7):342

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  Google Scholar 

  • Busch CJ, Binder CJ (2017) Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta 1862(4):398–406

    Article  CAS  Google Scholar 

  • Chen S, Chen M, Wang Z, Qiu W, Wang J, Shen Y, Wang Y, Ge S (2016) Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environ Toxicol Pharmacol 45:179–186

    Article  CAS  Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J, Swennen RL (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347(2):201–207

    Article  CAS  Google Scholar 

  • Fischer UA, Carle R, Kammerer DR (2011) Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS n. Food Chem 127(2):807–821

    Article  CAS  Google Scholar 

  • Glibert PM (2017) Eutrophication, harmful algae and biodiversity—challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124(2):591–606

    Article  CAS  Google Scholar 

  • Haroon AM, Abdel-Aal EI (2016) Chemical composition and in vitro anti-algal activity of Potamogeton crispus and Myriophyllum spicatum extracts. Egypt J Aquat Res 42(4):393–404

    Article  Google Scholar 

  • Hassan HM, Scandalios JG (1990) Superoxide dismutases in aerobic organisms. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimatation mechanisms. Wiley-Liss, New York, pp 175–199

    Google Scholar 

  • Hong Y, Hu HY, Xie X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269

    Article  CAS  Google Scholar 

  • Huang HM, Xiao X, Ghadouani A, Wu JP, Nie ZY, Peng C, Xu X, Shi J (2015) Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins 7(1):66–80

    Article  CAS  Google Scholar 

  • Huang H, Xiao X, Lin F, Grossart HP, Nie Z, Sun L, Xu C, Shi J (2016) Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: preparation, release dynamics and inhibitory effects. Water Res 95:113–123

    Article  CAS  Google Scholar 

  • Hung SM, Hsu BD, Lee S (2014) Modelling of isothermal chlorophyll extraction from herbaceous plants. J Food Eng 128:17–23

    Article  CAS  Google Scholar 

  • Kazemi M, Karim R, Mirhosseini H, Abdul HA (2016) Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: punicalagin and hydroxybenzoic acids. Food Chem 206:156–166

    Article  CAS  Google Scholar 

  • Ken CF, Hsiung TM, Huang ZX, Juang RH, Lin CT (2005) Characterization of Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. J Agric Food Chem 53(5):1470–1474

    Article  CAS  Google Scholar 

  • Laue P, Bährs H, Chakrabarti S, Steinberg CEW (2014) Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere 104(3):212–220

    Article  CAS  Google Scholar 

  • Li J, He X, Li M, Zhao W, Liu L, Kong X (2015) Chemical fingerprint and quantitative analysis for quality control of polyphenols extracted from pomegranate peel by HPLC. Food Chem 176:7–11

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Zhang P, Zeng G, Cai X, Liu S, Yin Y, Hu X, Hu X, Tan X (2016) Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J Environ Sci (China) 43:40–47

    Article  CAS  Google Scholar 

  • Magdaleno A, Velez CG, Wenzel MT, Tell G (2014) Effects of cadmium, copper and zinc on growth of four isolated algae from a highly polluted Argentina river. Bull Environ Contam Toxicol 92(2):202–207

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH, Rai LC, Soeder CJ (2000) Evidence for the non-involvement of nitric oxide synthase in nitric oxide production by the green alga Scenedesmus obliquus. J Plant Physiol 156(3):423–426

    Article  CAS  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86(1):271–278

    Article  CAS  Google Scholar 

  • Mu D, Ruan R, Addy M, Mack S, Chen P, Zhou Y (2017) Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production. Bioresour Technol 230:33–42

    Article  CAS  Google Scholar 

  • Ni L, Jie X, Wang P, Li S, Wang G, Li Y, Li Y, Acharya K (2015) Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release. Chemosphere 121:110–116

    Article  CAS  Google Scholar 

  • Pakdel FM, Sim L, Beardall J, Davis J (2013) Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110:24–30

    Article  Google Scholar 

  • Park J, Church J, Son Y, Kim KT, Lee WH (2017) Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrason Sonochem 38:326–334

    Article  CAS  Google Scholar 

  • Patino R, Rashel RH, Rubio A, Longing S (2018) Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga. Harmful Algae 71:1–9

    Article  CAS  Google Scholar 

  • Pichierri S, Pezzolesi L, Vanucci S, Totti C, Pistocchi R (2016) Inhibitory effect of polyunsaturated aldehydes (PUAs) on the growth of the toxic benthic dinoflagellate Ostreopsis cf. ovata. Aquat Toxicol 179:125–133

    Article  CAS  Google Scholar 

  • Qu W, Pan Z, Zhang R, Ma HX, Chen ZB, Wang Z, Atungulu GG (2009) Integrated extraction and anaerobic digestion process for recovery of nutraceuticals and biogas from pomegranate marc. Trans ASABE 52(6):1997–2006

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Shabtay A, Eitam H, Tadmor Y, Orlov A, Meir A, Weinberg P, Weinberg ZG, Chen Y, Brosh A, Izhaki I (2008) Nutritive and antioxidative potential of fresh and stored pomegranate industrial byproduct as a novel beef cattle feed. J Agric Food Chem 56(21):10063–10070

    Article  CAS  Google Scholar 

  • Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y (2018) Microorganisms-based methods for harmful algal blooms control: a review. Bioresour Technol 248:12–20

    Article  CAS  Google Scholar 

  • Wang R, Wang J, Xue Q, Tan L, Cai J, Wang H (2016a) Preliminary analysis of allelochemicals produced by the diatom Phaeodactylum tricornutum. Chemosphere 165:298–303

    Article  CAS  Google Scholar 

  • Wang R, Hua M, Yu Y, Zhang M, Xian QM, Yin DQ (2016b) Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147:264–271

    Article  CAS  Google Scholar 

  • Xi J, He L, Yan LG (2017) Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem 230:354–361

    Article  CAS  Google Scholar 

  • Yalcin B, Artuz ML, Pavlidou A, Cubuk S, Dassenakis M (2017) Nutrient dynamics and eutrophication in the Sea of Marmara: data from recent oceanographic research. Sci Total Environ 601-602:405–424

    Article  CAS  Google Scholar 

  • Yan RW, Ji YH, Ji HL, Fang YM, Kerr PG, Yang LZ (2011) The decoction of radix Astragali inhibits the growth of Microcystis aeruginosa. Ecotoxicol Environ Saf 74:1006–1010

    Article  CAS  Google Scholar 

  • Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, Zeng F, Chen P, Wang C, Feng J (2011) Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in HaCaT cells through inhibition of ROS/NF-kappaB/COX-2 pathway. PLoS One 6(7):e21971

    Article  CAS  Google Scholar 

  • Yang Z, Kong F, Shi X, Yu Y, Zhang M (2015) Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain. J Hazard Mater 283:447–453

    Article  CAS  Google Scholar 

  • Zak L, Kosakowska A (2015) The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar Coast Shelf Sci 167:113–118

    Article  Google Scholar 

  • Zamocky M, Jakopitsch C, Furtmuller PG, Dunand C, Obinger C (2008) The peroxidase-cyclooxygenase superfamily: reconstructed evolution of critical enzymes of the innate immune system. Proteins 72(2):589–605

    Article  CAS  Google Scholar 

  • Zheng H, Sun C, Hou X, Wu M, Yao Y, Li F (2018) Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Bioresour Technol 247:273–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Associate Professor Li Tizheng for his selfless help in the statistical analysis of the data.

Funding

This work was funded by the National Natural Science Foundation of China (Grant number 21677115) and the Shaanxi Provincial Natural Science Foundation Research Key Project (2016JZ019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, Y., Shi, L. et al. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. Environ Sci Pollut Res 26, 22389–22399 (2019). https://doi.org/10.1007/s11356-019-05507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05507-1

Keywords

Navigation