Skip to main content
Log in

Impacts of salinity on CO 2 spatial distribution and storage amount in the formation with different dip angles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Formation dip angle and the distortion of salinity affect the spatial distribution and storage capacity of carbon dioxide (CO2). In this numerical study, based on an actual CO2 injection demonstration project (Shiqianfeng group in the Ordos Basin) in China, CO2 was injected for a period of 20 years at four different formation dip angles (0°, 5°, 10°, 15°). In conjunction, some salinity values were chosen, ranging from saturation salinity to no salinity. A three-dimensional (3D) model was established to systematically explore the influence of different formation dip angles and salinities on the CO2 spatial distribution and storage amount. The simulation results showed that larger salinity and higher pressure near the injection well will lead the CO2 gas-phase saturation and mass fraction to be smaller for a given formation dip angle. When salinity is held constant at the saturation value, a larger dip angle will cause a smaller CO2 gas saturation in the upper right units of the injection well, and a larger gas saturation in the lower left units at the 20th year of CO2 injection. For large salinity values (full, half, and quarter saturation salinity), the larger the formation dip angle is, the greater the CO2 total storage amount. For smaller salinity values (0.00 and 0.03), a transition point existed (at 8 and 18.2 years) during the 20-year injection period. Before the transition point, the CO2 total storage amount also increases with the dip angle. After the transition point, however, the larger the formation dip angle is, the smaller the CO2 total storage amount becomes. In addition, a lower salinity may lead to the earlier appearance of the transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17.
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmadi MA, Pouladi B, Barghi T (2016) Numerical modeling of CO2 injection scenarios in petroleum reservoirs: application to CO2 sequestration and EOR. J Nat Gas Sci Eng 30:38–49

  • Appiah K, Du J, Poku J (2018) Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environ Sci Pollut Res:1–14

  • Bu F (2015) Study of small faults inside reservoir effect on CO2 spatial distribution and storage. Dissertation[D]. JiLin University.

  • Bu F, Xu T, Wang F, Yang Z, Tian H (2016) Influence of highly permeable faults within a low-porosity and low-permeability reservoir on migration and storage of injected CO2[J]. Geofluids 16(4):769–781

    Article  Google Scholar 

  • Chasset C, Jarsjö J, Erlström M, Cvetkovic V, Destouni G (2011) Scenario simulations of CO2 injection feasibility, plume migration and storage in a saline aquifer, Scania, Sweden[J]. Int J Greenh Gas Con 5(5):1303–1318

  • Colucci F, Guandalini R, Macini P, Mesini E, Moia F, Savoca D (2016) A feasibility study for CO2 geological storage in Northern Italy. International Journal of Greenhouse Gas Control 55:1–14

    Article  CAS  Google Scholar 

  • Doughty C (2010) Investigation of CO2 Plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. Transp Porous Media 82(1):49–76

    Article  CAS  Google Scholar 

  • Du B (2016) Three-dimensional geological modeling and field injection test of CO2 storage site[D]. China University of Geosciences (Bei Jing)

  • Ge XZ, Zhao YJ, Yuan HM, Ning Q, Hu QY (2012) Present situation and the development of CO2 geological storage abroad [M]. Geology Publishing House, Beijing in Chinese

    Google Scholar 

  • Gheibi S, Vilarrasa V, Holt RM (2018) Numerical analysis of mixed-mode rupture propagation of faults in reservoir-caprock system in CO2 storage. International Journal of Greenhouse Gas Control 71:46–61

    Article  CAS  Google Scholar 

  • Goater AL, Bijeljic B, Blunt MJ (2013) Dipping open aquifers—the effect of top-surface topography and heterogeneity on CO2 storage efficiency[J]. International Journal of Greenhouse Gas Control 17:318–331

    Article  CAS  Google Scholar 

  • Guo J, Wen D, Zhang S, Xu T, Li X, Diao Y, Jia X (2015) Potential and suitability evaluation of CO2 geological storage in major sedimentary basins of China, and the demonstration project in Ordos Basin. Acta Geologica Sinica-English Edition 89(4):1319–1332

  • Haas J L. (1976) Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaC1 solutions[M]// Thermodynamic properties of the coexisting phases and thermochemical properties of the NaCl component in boiling NaCl solutions /. US Govt Print Off 24–30

  • Hesse MA, Orr FM, Tchelepi HA (2008) Gravity currents with residual trapping. J Fluid Mech 611:35–60

    Article  CAS  Google Scholar 

  • Jing J. (2016) Influence of formation dip on CO2 migration and storage amount in reservoir[D].JiLin University

  • Jing J, Yuan YL, Yang YL, Wang FG, Yang ZJ (2014) The influentialstudy of formatin dip for CO2 geological storage-taking OrdosCCS project for example. Geotechnical Investigation & Surveying 6:39–44 in Chinese

    Google Scholar 

  • Kim KY, Han WS, Oh J et al (2012) Characteristics of salt-precipitation and the associated pressure build-up during CO2 storage in saline aquifers[J]. Transp Porous Media 92(2):397–418

    Article  CAS  Google Scholar 

  • Li Q, Fei W, Liu X, Wei X, Jing M, Li X (2014a) Challenging combination of CO2 geological storage and coal mining in the Ordos basin, China[J]. Greenhouse Gases: Science and Technology 4(4):452–467

    Article  Google Scholar 

  • Li Q, Wei YN, Liu G, Lin Q (2014b) Combination of CO2 geological storage with deep saline water recovery in western China: insights from numerical analyses. Appl Energy 116:101–110

    Article  CAS  Google Scholar 

  • Li C, Zhang K, Wang Y, Guo C, Maggi F (2016a) Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China. International Journal of Greenhouse Gas Control 45:216–232

    Article  CAS  Google Scholar 

  • Li X, Li Q, Bai B, Wei N, Yuan W (2016b) The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China[J]. J Rock Mech Geotech Eng 8(6):948–966

    Article  Google Scholar 

  • Li Q, Song R, Shi H, Ma J, Liu X, Li X (2018) U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project. Environ Sci Pollut Res 25(12):12034–12052

    Article  CAS  Google Scholar 

  • Li Q, Wu S, Lei Y, Li S, Li L (2019) China’s provincial CO 2 emissions and interprovincial transfer caused by investment demand. Environ Sci Pollut Res 26(1):312–325

    Article  CAS  Google Scholar 

  • Liu H, Hou Z, Were P et al (2014) Simulation of CO2 plume movement in multilayered saline formations through multilayer injection technology in the Ordos Basin, China[J]. Environ Earth Sci 71(10):4447–4462

    Article  CAS  Google Scholar 

  • Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO 2 in saline aquifers—a review of the experience from existing storage operations. International Journal of Greenhouse Gas Control 4(4):659–667

    Article  CAS  Google Scholar 

  • Miri R, Hellevang H (2016) Salt precipitation during CO2 storage—a review. International Journal of Greenhouse Gas Control 51:136–147

    Article  CAS  Google Scholar 

  • Nguyen, Minh C et al (2017a) A geostatistical study in support of CO2 storage in deep saline aquifers of the Shenhua CCS project, Ordos Basin, China. Energy Procedia 114:5826–5835

    Article  CAS  Google Scholar 

  • Nguyen, Minh C et al (2017b) An object-based modeling and sensitivity analysis study in support of CO2 storage in deep saline aquifers at the Shenhua site, Ordos Basin. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 3(3):293–314

    Article  Google Scholar 

  • Niemi, Auli, Jacob Bear, and Jacob Bensabat, eds. (2017) Geological storage of CO2 in deep saline formations. Vol. 29. Springer

  • Peuble S, Godard M, Luquot L et al (2015) CO2 geological storage in olivine rich basaltic aquifers: new insights from reactive-percolation experiments[J]. Appl Geochem 52:174–190

    Article  CAS  Google Scholar 

  • Pruess K, Müller N. (2009) Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation[J]. Water Resour Res, 45(3)

  • Pruess K, Nordbotten J (2011) Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock[J]. Transp Porous Media 90(1):135–151

    Article  CAS  Google Scholar 

  • Pruess K, Spycher N (2007) ECO2N–a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers[J]. Energy Convers Manag 48(6):1761–1767

    Article  CAS  Google Scholar 

  • Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 User’s Guide,Version2.0.LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley

    Book  Google Scholar 

  • Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21(8):5427–5449

    Article  CAS  Google Scholar 

  • Sajjad F, Noreen U, Zaman K (2014) Climate change and air pollution jointly creating nightmare for tourism industry. Environ Sci Pollut Res 21(21):12403–12418

    Article  CAS  Google Scholar 

  • Shen PP,Liao XW (2009) CO2 Geological storage and enhanced oil recovery technology[M], Bei jing, Petroleum Industry Press, 238,(in Chinese)

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

  • Vilarrasa V, Rutqvist J (2017) Thermal effects on geologic carbon storage. Earth Sci Rev 165:245–256

    Article  CAS  Google Scholar 

  • Vishal V, Singh TN, Ranjith PG (2015) Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel 139:51–58

    Article  CAS  Google Scholar 

  • Wang F, Jing J, Xu T, Yang Y, Jin G (2016) Impacts of stratum dip angle on CO2 geological storage amount and security[J]. Greenhouse Gases: Science and Technology 6(5):682–694

    Article  CAS  Google Scholar 

  • Wang F, Jing J, Yang Y, Liu H, Sun Z, Xu T, Tian H (2017) Impacts of injection pressure of a dip-angle sloping strata reservoir with low porosity and permeability on CO2 injection amount. Greenhouse Gases: Science and Technology 7(1):92–105

    Article  CAS  Google Scholar 

  • Wolf E, Arnell N, Friedlingstein P, et al. (2017) Climate updates: what have we learnt since the IPCC 5th Assessment Report?[J]

  • Yang YL (2014) The implementation technology of CO2 geological storage in complex geological structure and applying it in Orods Basin[D]..JiLin Univesity.

  • Yang Y, Xu T, Wang F, et al. (2012) Toughvisual: a user-friendly pre-processing and post-processing graphical interface for TOUGHREACT[C]//. Proceedings TOUGH Symposium: 17-19

  • Yang YL, Xu TF, Li JQ, Wang FG (2014) Modeling technology and realization of complex geological body using Tough to simulate CO2 geological storage process[J]. Journal of Jilin University (Earth Science Edition) 44(04):1307–1313

    Google Scholar 

  • Yue GF, Tian HL, Xu TF et al (2012) Migration and storage mechanisms of CO2 with different injection rates[J]. Adv Mater Res 588:15–20

    Article  Google Scholar 

  • Zhang L, Ezekiel J, Li D, Pei J, Ren S (2014) Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China. Appl Energy 122:237–246

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the project of “CO2 geological storage comprehensive geological survey in China Junggar basin” from China Geological Survey (Grant No. 121201012000150010) and by China National Science and Technology Major Projects subject (Grant No. 2016ZX05016-005)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlin Yang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, J., Yang, Y., Tang, Z. et al. Impacts of salinity on CO 2 spatial distribution and storage amount in the formation with different dip angles . Environ Sci Pollut Res 26, 22173–22188 (2019). https://doi.org/10.1007/s11356-019-05267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05267-y

Keywords

Navigation