Skip to main content

Advertisement

Log in

Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout

  • PAHs and fish – Exposure monitoring and adverse effects – from molecular to individual level
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g−1 sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic < Arabian Light < Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g−1 sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAH:

Polycyclic aromatic hydrocarbon

AhR:

Aryl hydrocarbon receptor

DD:

Degree day

dw:

Dry weight

BaP:

Benzo[a]pyrene

Fluo:

Fluoranthene

ELS:

Early life stage

MN:

Micronucleus

PY:

Pyrolytic

LO:

Arabian Light oil

HO:

Erika heavy oil

References

  • Amat A, Burgeot T, Castegnaro M, Pfohl-Leszkowicz A (2006) DNA adducts in fish following an oil spill exposure. Environ Chem Lett 4(2):93–99

    Article  CAS  Google Scholar 

  • Baars B-J (2002) The wreckage of the oil tanker “Erika”—human health risk assessment of beach cleaning, sunbathing and swimming. Toxicol Lett 128(1–3):55–68. doi:10.1016/S0378-4274(01)00533-1

    Article  CAS  Google Scholar 

  • Barbee GC, Barich J, Duncan B, Bickham JW, Matson CW, Hintze CJ, Autenrieth RL, Zhou G-D, McDonald TJ, Cizmas L, Norton D, Donnelly KC (2008) In situ biomonitoring of PAH-contaminated sediments using juvenile coho salmon (Oncorhynchus kisutch). Ecotoxicol Environ Saf 71(2):454–464

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Short JW, Rice SD (2003) Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to pacific herring eggs and larvae. Environ Toxicol Chem 22(3):650–660

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Heintz R, Rice SD (2004) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78(1):60–67. doi:10.1093/toxsci/kfh051

    Article  CAS  Google Scholar 

  • Baršienė J, Dedonytė V, Rybakovas A, Andreikėnaitė L, Andersen OK (2006) Investigation of micronuclei and other nuclear abnormalities in peripheral blood and kidney of marine fish treated with crude oil. Aquat Toxicol 78(0):S99–S104. doi:10.1016/j.aquatox.2006.02.022

    Google Scholar 

  • Baumard P, Budzinski H, Garrigues P (1998) PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Mar Pollut Bull 36(8):577–586. doi:10.1016/S0025-326X(98)00014-9

    Article  CAS  Google Scholar 

  • Belanger SE, Balon EK, Rawlings JM (2010) Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97(2):88–95

    Article  CAS  Google Scholar 

  • Billiard SM, Meyer JN, Wassenberg DM, Hodson PV, Di Giulio RT (2008) Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol Sci 105(1):5–23. doi:10.1093/toxsci/kfm303

    Article  CAS  Google Scholar 

  • Brinkmann M, Hudjetz S, Kammann U, Hennig M, Kuckelkorn J, Chinoraks M, Cofalla C, Wiseman S, Giesy JP, Schäffer A, Hecker M, Wölz J, Schüttrumpf H, Hollert H (2013) How flood events affect rainbow trout: evidence of a biomarker cascade in rainbow trout after exposure to PAH contaminated sediment suspensions. Aquat Toxicol 128–129(0):13–24. doi:10.1016/j.aquatox.2012.11.010

    Article  Google Scholar 

  • Brinkworth LC, Hodson PV, Tabash S, Lee P (2003) CYP1A induction and blue sac disease in early developmental stages of rainbow trout (Oncoryhchus mykiss) exposed to retene. J Toxicol Environ Health A 66:627–646

    Article  CAS  Google Scholar 

  • Budzinski H, Letellier M, Thompson S, Le Menach K, Garrigues P (2000) Combined protocol for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments using focussed microwave assisted (FMW) extraction at atmospheric pressure. Fresenius J Anal Chem 367(2):165–171. doi:10.1007/s002160051618

    Article  CAS  Google Scholar 

  • Burczynski ME, Penning TM (2000) Genotoxic polycyclic aromatic hydrocarbon ortho-quinones generated by aldo-keto reductases induce CYP1A1 via nuclear translocation of the aryl hydrocarbon receptor. Cancer Res 60(4):908–915

    CAS  Google Scholar 

  • Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79(3):257–267

    Article  CAS  Google Scholar 

  • Cachot J, Law M, Pottier D, Peluhet L, Norris M, Budzinski H, Winn R (2007) Characterization of toxic effects of sediment-associated organic pollutants using the λ transgenic medaka. Environ Sci Technol 41(22):7830–7836

    Article  CAS  Google Scholar 

  • Carls MG, Meador JP (2009) A perspective on the toxicity of petrogenic PAHs to developing fish embryos related to environmental chemistry. Hum Ecol Risk Assess 15(6):1084–1098

    Article  CAS  Google Scholar 

  • Carls MG, Thedinga JF (2010) Exposure of pink salmon embryos to dissolved polynuclear aromatic hydrocarbons delays development, prolonging vulnerability to mechanical damage. Mar Environ Res 69(5):318–325

    Article  CAS  Google Scholar 

  • Carls MG, Rice SD, Hose JE (1999) Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ Toxicol Chem 18(3):481–493. doi:10.1002/etc.5620180317

    Article  CAS  Google Scholar 

  • Cook PM, Robbins JA, Endicott DD, Lodge KB, Guiney PD, Walker MK, Zabel EW, Peterson RE (2003) Effects of aryl hydrocarbon receptor-mediated early life stage toxicity on lake trout populations in Lake Ontario during the 20th century. Environ Sci Technol 37(17):3864–3877. doi:10.1021/es034045m

    Article  CAS  Google Scholar 

  • Couillard CM (2002) A microscale test to measure petroleum oil toxicity to mummichog embryos. Environ Toxicol 17(3):195–202. doi:10.1002/tox.10049

    Article  CAS  Google Scholar 

  • De Andrade VM, De Freitas TRO, Da Silva J (2004) Comet assay using mullet (Mugil sp.) and sea catfish (Netuma sp.) erythrocytes for the detection of genotoxic pollutants in aquatic environment. Mutat Res Genet Toxicol Environ Mutagen 560(1):57–67

    Article  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10(12):1541–1583. doi:10.1002/etc.5620101203

    Article  Google Scholar 

  • EC (2010) Directive 2010/63/EU of the european parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. vol L276. Official Journal of the European Union,

  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97(2):79–87

    Article  CAS  Google Scholar 

  • Escarti E, Porte C (1999) Biomonitoring of PAH pollution in high-altitude mountain lakes through the analysis of fish bile, vol 33. American Chemical Society, Washington, DC, ETATS-UNIS

    Google Scholar 

  • Fallahtafti S, Rantanen T, Brown RS, Snieckus V, Hodson PV (2012) Toxicity of hydroxylated alkyl-phenanthrenes to the early life stages of Japanese medaka (Oryzias latipes). Aquat Toxicol 106–107(0):56–64. doi:10.1016/j.aquatox.2011.10.007

    Article  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments (review). Mutat Res Rev Mutat Res 681(1):80–92

    Article  CAS  Google Scholar 

  • Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S (2001) Improved fish lymphocyte culture for chromosome preparation. Genetica 111:77–89

    Article  CAS  Google Scholar 

  • Geffard O, Geffard A, His E, Budzinski H (2003) Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar Pollut Bull 46(4):481–49

    Article  CAS  Google Scholar 

  • González-Doncel M, González L, Fernández-Torija C, Navas JM, Tarazona JV (2008) Toxic effects of an oil spill on fish early life stages may not be exclusively associated to PAHs: studies with Prestige oil and medaka (Oryzias latipes). Aquat Toxicol 87(4):280–288. doi:10.1016/j.aquatox.2008.02.013

    Article  Google Scholar 

  • Guasch H, Ginebreda A, Geiszinger A, Akkanen J, Slootweg T, Mäenpää K, Leppänen M, Agbo S, Gallampois C, Kukkonen JK (2012) Bioavailability of organic contaminants in freshwater environments. In: Emerging and priority pollutants in rivers. The handbook of environmental chemistry. Springer, Heidelberg, pp 25–53. doi:10.1007/978-3-642-25722-3_2

    Chapter  Google Scholar 

  • Hatlen K, Sloan CA, Burrows DG, Collier TK, Scholz NL, Incardona JP (2010) Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos. Aquat Toxicol 99(1):56–64

    Article  CAS  Google Scholar 

  • Hawkins SA, Billiard SM, Tabash SP, Brown RS, Hodson PV (2002) Altering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 21(9):1845–1853. doi:10.1002/etc.5620210912

    Article  CAS  Google Scholar 

  • Hayashi M, Ueda T, Uyeno K, Wada K, Kinae N, Saotome K, Tanaka N, Takai A, Sasaki YF, Asano N, Sofuni T, Ojima Y (1998) Development of genotoxicity assay systems that use aquatic organisms. Mutat Res Fundam Mol Mech Mutagen 399(2):125–133

    Article  CAS  Google Scholar 

  • Heintz RA, Short JW, Rice SD (1999) Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon valdez crude oil. Environ Toxicol Chem 18(3):494–503. doi:10.1002/etc.5620180318

    Article  CAS  Google Scholar 

  • Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS, Holland L, Larsen M, Stekoll MS, Rice SD, Collier TK, Scholz NL, Incardona JP (2011) Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Natl Acad Sci 108(17):7086–7090. doi:10.1073/pnas.1019031108

    Article  CAS  Google Scholar 

  • Hodson PV, Qureshi K, Noble CAJ, Akhtar P, Brown RS (2007) Inhibition of CYP1A enzymes by β-naphthoflavone causes both synergism and antagonism of retene toxicity to rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 81(3):275–285. doi:10.1016/j.aquatox.2006.12.012

    Article  CAS  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113(12):1755–1762

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Day HL, Sloan CA, Bolton JL, Collier TK, Scholz NL (2009) Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol 43(1):201–207. doi:10.1021/es802270t

    Article  CAS  Google Scholar 

  • Karlsson J, Sundberg H, Åkerman G, Grunder K, Eklund B, Breitholtz M (2008) Hazard identification of contaminated sites—ranking potential toxicity of organic sediment extracts in crustacean and fish. J Soils Sed 8(4):263–274. doi:10.1007/s11368-008-0015-3

    Article  CAS  Google Scholar 

  • Kocan RM, Matta MB, Salazar SM (1996) Toxicity of weathered coal tar for shortnose sturgeon (Acipenser brevirostrum) embryos and larvae. Arch Environ Contam Toxicol 31:161–165

    Article  CAS  Google Scholar 

  • Liu JJ, Wang XC, Fan B (2011) Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment. Bioresour Technol 102:5305–5311

    Article  CAS  Google Scholar 

  • Milinkovitch T, Kanan R, Thomas-Guyon H, Le Floch S (2011a) Effects of dispersed oil exposure on the bioaccumulation of polycyclic aromatic hydrocarbons and the mortality of juvenile Liza ramada. Sci Total Environ 409(9):1643–1650. doi:10.1016/j.scitotenv.2011.01.009

    Article  CAS  Google Scholar 

  • Milinkovitch T, Ndiaye A, Sanchez W, Le Floch S, Thomas-Guyon H (2011b) Liver antioxidant and plasma immune responses in juvenile golden grey mullet (Liza aurata) exposed to dispersed crude oil. Aquat Toxicol 101(1):155–164. doi:10.1016/j.aquatox.2010.09.013

    Article  CAS  Google Scholar 

  • Milinkovitch T, Imbert N, Sanchez W, Le Floch S, Thomas-Guyon H (2013) Toxicological effects of crude oil and oil dispersant: biomarkers in the heart of the juvenile golden grey mullet (Liza aurata). Ecotoxicol Environ Saf 88(0):1–8. doi:10.1016/j.ecoenv.2012.10.029

    Article  CAS  Google Scholar 

  • Nahrgang J, Camus L, Carls MG, Gonzalez P, Jönsson M, Taban IC, Bechmann RK, Christiansen JS, Hop H (2010) Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquat Toxicol 97(3):234–242. doi:10.1016/j.aquatox.2009.11.003

    Article  CAS  Google Scholar 

  • Olive PL, Banáth JP (1995) Sizing highly fragmented DNA in individual apoptotic cells using the Comet Assay and a DNA crosslinking agent. Exp Cell Res 221(1):19–26. doi:10.1006/excr.1995.1348

    Article  CAS  Google Scholar 

  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423. doi:10.1016/S0141-1136(02)00146-0

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. doi:10.1016/0014-4827(88)90265-0

    Article  CAS  Google Scholar 

  • Sundberg H, Ishaq R, Akerman G, Tjarnlund U, Zebuhr Y, Linderoth M, Broman D, Balk L (2005) A bio-effect directed fractionation study for toxicological and chemical characterization of organic compounds in bottom sediment. Toxicol Sci 84(1):63–72. doi:10.1093/toxsci/kfi067

    Article  CAS  Google Scholar 

  • Udroiu I (2006) The micronucleus test in piscine erythrocytes. Aquat Toxicol 79:201–204

    Google Scholar 

  • Wang Z, Hollebone BP, Fingas M, Fieldhouse B, Sigouin L, Landriault M, Smith P, Noonan J, Thouin G (2003) Characteristics of spilled oils, fuels, and petroleum products: 1. Composition and properties of selected oils. US EPA

  • Wang B, Liu Y, Chen X, Fan Z (2010) Amitosis-like nuclear division in erythrocytes of triploid rainbow trout Oncorhynchus mykiss. J Fish Biol 76:1205–1211. doi:10.1111/j.1095-8649.2010.02556.x

    Article  CAS  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112(17):1658–1664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the French National Agency for Research, program “Contaminant, Ecosystème et Santé,” in the frame of the ConPhyPoP (2009–002) research project. Equipment was funded by GDR EXECO, Aquitaine Region, and CPER A2E. This project is cofinanced by the European Union with the European fund of regional development. Florane Le Bihanic received a Ph.D. fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche. The authors wish to thank CEDRE for providing the oils used in this study. This work was part of the LABEX COTE cluster of excellence continental to coastal ecosystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Cachot.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bihanic, F., Morin, B., Cousin, X. et al. Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout. Environ Sci Pollut Res 21, 13720–13731 (2014). https://doi.org/10.1007/s11356-014-2804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2804-0

Keywords

Navigation