Skip to main content

Advertisement

Log in

Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species

  • Advanced oxidation processes for environmental protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L−1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L−1). The influence of OH·, O2 ·−, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·− were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L−1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7 × 10−2 mg cm−2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen C, Wang Z, Ruan S, Zou B, Zhao M, Wu F (2008) Photocatalytic degradation of C.I. Acid Orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method. Dyes Pigments 77:204–209. doi:10.1016/j.dyepig.2007.05.003

    Article  CAS  Google Scholar 

  • Clesceriv LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Cooper JE, Kendig EL, Belcher SM (2011) Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 85:943–947. doi:10.1016/j.chemosphere.2011.06.060

    Article  CAS  Google Scholar 

  • Correia FV, Moreira JC (2010) Effects of glyphosate and 2,4-D on earthworms (Eisenia foetida) in laboratory tests. Bull Environ Contam Toxicol 85:264–268. doi:10.1007/s00128-010-00897

    Article  CAS  Google Scholar 

  • Daskalaki VM, Frontistis Z, Mantzavios D, Katsaounis A (2011) Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti. Catal Today 161:110–114. doi:10.1016/j.cattod.2010.09.018

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21. doi:10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  • Greenstock CL, Miller RW (1975) The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution and in chloroplasts. BBA - Bioenergetic 396:11–16. doi:10.1016/0005-2728(75)90184-X

    Article  CAS  Google Scholar 

  • Gueltekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85:816–832. doi:10.1016/j.jenvman.2007.07.020

    Article  Google Scholar 

  • Guohong X, Guoguang L, Dezhi S, Liqing Z (2009) Kinetics of acetamiprid photolysis in solution. Bull Environ Contam Toxicol 82:129–132. doi:10.1007/s00128-008-9520-8

    Article  Google Scholar 

  • ISO 11268-1 (2007) Soil quality—effects of pollutants on earthworms—part 1: determination of acute toxicity to Eisenia fetida/Eisenia andrei

  • Jia C, Wang Y, Zhang C, Qin Q, Kong S, Yao S (2012) Photocatalytic degradation of bisphenol A in aqueous suspensions of titanium dioxide. Environ Eng Sci 29:630–637. doi:10.1089/ees.2011.0132

    Article  CAS  Google Scholar 

  • Jiménez M, Maldonado MI, Rodríguez EM, Hernández-Ramírez A, Saggioro E, Carra I, Sánchez-Pérez J (2014) A supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biot. doi:10.1002/jctb.4299

  • Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol B 163:419–424. doi:10.1016/j.jphotochem.2004.01.012

    Article  CAS  Google Scholar 

  • Kang JH, Aasi D, Katayama Y (2007) Bisphenol-A in aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit Rev Toxicol 37:607–625. doi:10.1080/10408440701493103

    Article  CAS  Google Scholar 

  • Langdon KA, Warne MJ, Smernik RJ, Shareef A, Kookana RS (2011) Degradation of 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil under laboratory conditions. Chemosphere 84:1556–1562. doi:10.1016/j.chemosphere.2011.05.053

    Article  CAS  Google Scholar 

  • Langdon KA, Warne MJ, Smernik RJ, Shareef A, Kookana RS (2013) Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil. Sci Total Environ 447:56–43. doi:10.1016/j.scitotenv.2012.12.064

    Article  CAS  Google Scholar 

  • Lucas MS, Mosteo R, Maldonado MI, Malato S, Peres JA (2009) Solar photochemical treatment of winery wastewater in a CPC reactor. J Agric Food Chem 57: 11242–11248 . doi:10.1021/jf902581b

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Arami M, Limaee NY, Gharanjig K, Ardejani FD (2006) Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloid Surface A 290:125–131. doi:10.1016/j.colsurfa.2006.05.012

    Article  CAS  Google Scholar 

  • Miranda-García N, Maldonado MI, Coronado JM, Malato S (2010) Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in pilot plant. Catal Today 151:107–113. doi:10.1016/j.cattod.2010.02.044

    Article  Google Scholar 

  • Miranda-García N, Suárez S, Sánchez B, Coronado JM, Malato S, Maldonado MI (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in solar pilot plant. Appl Catal B Environ 103:294–301. doi:10.1016/j.apcatb.2011.01.030

    Article  Google Scholar 

  • Mitsionis AI, Vaimakis TC (2013) The effect of thermal treatment in TiO2 photocatalytic activity. J Therm Anal Calorim 112:621–628. doi:10.1007/s10973-012-2631-9

    Article  CAS  Google Scholar 

  • Nah WH, Park MJ, Gye MC (2011) Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med 38:75–81. doi:10.5653/cerm.2011.38.2.75

    Article  Google Scholar 

  • Nakada N, Shinohara H, Murata A, Kiri K, Managaki S, Sato N, Takada H (2007) Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res 41:4373–4382. doi:10.1016/j.watres.2007.06.038

    Article  CAS  Google Scholar 

  • Nomiyama K, Tanizaki T, Koga T, Arizono K, Shinohara R (2007) Oxidative degradation of BPA Using TiO2 in water, and transition of estrogenic activity in the degradation pathways. Arch Environ Contam Toxicol 52:8–15. doi:10.1007/s00244-005-0204-7

    Article  CAS  Google Scholar 

  • OECD (1984) Earthworm, acute toxicity tests (207). Guideline for testing of chemicals. Adopted: 04.04.1984

  • Oliveira AS, Saggioro EM, Pavesi T, Moreira JC, Vieira Ferreira LF (2012) Molecular photochemistry—various aspects. In: Saha S (ed) Solar photochemistry for environmental remediation—advanced oxidation processes for industrial wastewater treatment. InTech, Amsterdam, pp 195–222

    Google Scholar 

  • Palominos R, Freer J, Mondaca MA, Mansilla HD (2008) Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. J Photochem Photobiol A 193:139–145. doi:10.1016/j.jphotochem.2007.06.017

    Article  CAS  Google Scholar 

  • Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155. doi:10.1016/S0167-8809(99)00034-1

    Article  Google Scholar 

  • Ptak A, Wrobel A, Gregoraszczuk EL (2011) Effect of bisphenol-A on the expression of selected genes involved in cell cycle and apoptosis in the OVCAR-3 cell line. Toxicol Lett 202:30–35. doi:10.1016/j.toxlet.2011.01.015

    Article  CAS  Google Scholar 

  • Rodríguez EM, Fernández G, Klamerth N, Maldonado MI, Álvarez PM, Malato S (2010) Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl Catal B Environ 95:228–237. doi:10.1016/j.apcatb.2009.12.027

    Article  Google Scholar 

  • Sirisuk A, Hill CG, Anderson MA (1999) Photocatalytic degradation of ethylene over thin films of titania supported on glass rings. Catal Today 54:159–164. doi:10.1016/S0920-5861(99)00177-7

    Article  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol-A. Chemosphere 36:2149–2173. doi:10.1016/S0045-6535(97)10133-3

    Article  CAS  Google Scholar 

  • Sun B, Smirniotis PG (2003) Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catal Today 88:49–56. doi:10.1016/j.cattod.2003.08.006

    Article  CAS  Google Scholar 

  • Tsai WT (2006) Human health risk on environmental exposure to bisphenol-A: a review. J Environ Sci Health C 24:225–255. doi:10.1080/10590500600936482

    Article  CAS  Google Scholar 

  • Tsai W, Lee M, Su T, Chang Y (2009) Photodegradation of bisphenol-A in batch TiO2 suspension reactor. J Hazard Mater 168:269–275. doi:10.1016/j.jhazmat.2009.02.034

    Article  CAS  Google Scholar 

  • US EPA (1996) Ecological effects test guidelines—earthworm subchronic toxicity test. US Environ Prot Agency Fed Reg 96:167

    Google Scholar 

  • Wang C, Lee C, Lyu M, Juang L (2008) Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigment 76:817–824. doi:10.1016/j.dyepig.2007.02.004

    Article  CAS  Google Scholar 

  • Wang R, Ren D, Xia S, Zhang Y, Zhao J (2009) Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater 169:926–932. doi:10.1016/j.jhazmat.2009.04.036

    Article  CAS  Google Scholar 

  • Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H (2003) Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52:851–859. doi:10.1016/S0045-6535(02)00837-8

    Article  CAS  Google Scholar 

  • Yamaguchi A, Ishibashi H, Kohra S, Arizono K, Tominaga N (2005) Short-term effects of endocrine-disrupting chemicals on the expression of estrogen-responsive genes in male medaka (Oryzias latipes). Aquat Toxicol 30:239–249. doi:10.1016/j.aquatox.2004.12.011

    Article  Google Scholar 

  • Zhang R, Vigneswaran S, Ngo H, Nguyen H (2007) A submerged membrane hybrid system coupled with magnetic ion exchange (MIEX®) and flocculation in wastewater treatment. Desalination 216:325–333. doi:10.1016/j.desal.2006.11.025

    Article  CAS  Google Scholar 

  • Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008) Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater 155:305–311. doi:10.1016/j.jhazmat.2007.11.075

    Article  CAS  Google Scholar 

  • Zhao C, Pelaez M, Duan X, Deng H, O’Shea K, Kassinos DF, Dionysiou DD (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Appl Catal B Environ 134:83–92. doi:10.1016/j.apcatb.2013.01.003

    Article  Google Scholar 

Download references

Acknowledgments

E. M. Saggioro thanks ENSP/FIOCRUZ and Ciência sem Fronteiras for his scholarship and Plataforma Solar de Almería. J. C. Moreira thanks Faperj and CNPq. The authors thank E. S. Gonçalves for the chromatography method development. The authors also thank P. C. G. Pereira for the assistance with ecotoxicological tests. M. I. Maldonado thanks the Spanish Ministry of Science and Innovation for funding under the FOTOREG (CTQ2010-20740-C03-02) Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mendes Saggioro.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saggioro, E.M., Oliveira, A.S., Pavesi, T. et al. Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species. Environ Sci Pollut Res 21, 12112–12121 (2014). https://doi.org/10.1007/s11356-014-2723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2723-0

Keywords

Navigation