Skip to main content
Log in

Ecotoxicological biomarkers as investigating tools to evaluate the impact of acrylamide on Theba pisana snails

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acrylamide (ACR) is a widespread industrial chemical with recognized adverse effects not only to humans but to other organisms in the environment as well. In the present study, the ecotoxicological effects of dietary exposure to sublethal concentration (1/20 LC50) of ACR on the land snail, Theba pisana after 2 weeks of exposure and 1-week recovery with respect to oxidative stress parameters; lipid peroxidation (LPO), reduced glutathione (GSH), catalase (CAT), and glutathione-S-transferase (GST), cytogenetic parameter; deoxyribonucleic acid (DNA) content, as well as immunological parameters; cell death, phagocytosis, lysosomal membrane stability (LMS), lectins, superoxide anion (O2) generation, phenoloxidase (PO), peroxidase (POD), and hemocyanin (Hc) were examined. The results showed that ACR significantly increased LPO level and the activity of CAT and GST, cell death, and Hc level, whereas a significant decline in DNA and GSH contents, phagocytic activity, LMS, lectins, O2 generation, POD, and PO activities compared to the controls after 2-week exposure was observed. After 1-week recovery, most of the tested parameters in exposed snails were permanent and not reversible to the control levels. This study suggests that the tested multiple parameters of T. pisana species may be used as biomarkers of ACR exposure. Besides, T. pisana snails could be used as a good sentinel organism for ACR exposure in pollution monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  • Adema CM, Arguello DF, Stricker SA, Loker ES (1994) A time-lapse study of interactions between Echinostoma paraensei intramolluscan larval stages and adherent hemocytes from Biomphalaria glabrata and Helix aspersa. J Parasitol 80:719–727

    Article  CAS  Google Scholar 

  • Ali D (2014) Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnaea luteola L. Biol Trace Elem Res 162:333–341

    Article  CAS  Google Scholar 

  • Ashida M, Ohnishi E (1967) Activation of pre-phenol oxidase in hemolymph of the silkworm. Arch Biochem Biophys 122:411–416

    Article  CAS  Google Scholar 

  • Auffreta M, Rousseaua S, Bouteta I, Tanguya A, Baronb J, Moragaa D, Duchemina M (2006) A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranean. Ecotoxicol Environ Saf 63:393–405

    Article  CAS  Google Scholar 

  • Bakunina N, Pariante CM, Zunszain PA (2015) Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144:365–373

    Article  CAS  Google Scholar 

  • Baunthiyal M, Singh V, Dwivedi S (2017) Insights of antioxidants as molecules for drug discovery. Int J Pharmacol 13:874–889

    Article  CAS  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  • Bislimi K, Behluli A, Halili J, Mazreku I, Halili F (2013) Impact of pollution from Kosova’s power plantin obiliq on some biochemical parameters of the local population of garden snail (Helix pomatia L.). Res Environ 3:15–19

    Google Scholar 

  • Buczek SB, Gregory Cope W, Mclaughlin RA, Kwak TJ (2017) Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels. Environ Toxicol Chem 36:2715–2721

    Article  CAS  Google Scholar 

  • Calisi A, Lionetto MG, Giordano ME, Schettino T (2008) Morphometric alterations in Mytilus galloprovincialis granulocytes: a new biomarker. J Environ Toxicol Chem 27:1435–1441

    Article  CAS  Google Scholar 

  • Calisi A, Lionetto MG, Schettino T (2011) Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Sci Total Environ 409:4456–4464

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Methods of Enzymology 2:773–775

    Google Scholar 

  • Cheng W, Wang LU, Chen JC (2005) Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture 250:592–601

    Article  Google Scholar 

  • CoStat program (2002) Microcomputer program analysis. CoHort software, Version 2.6, Monterey

  • Costa R, Pereira JL, Gomes J, Gonçalves F, Hunkeler D, Rasteiro MG (2014) The effects of acrylamide polyelectrolytes on aquatic organisms: relating toxicity to chain architecture. Chemosphere 112:177–184

    Article  CAS  Google Scholar 

  • De Vaufleury A, Coeurdassier M, Pandard P, Scheifler R, Lovy C, Crini N, Badot P-M (2006) How terrestrial snails can be used in risk assessment of soils. Environ Toxicol Chem 25:797–806

    Article  Google Scholar 

  • Dyrynda EA, Pipe RK, Burt GR, Ratcliffe NA (1998) Modulations in the immune defences of mussels (Mytilus edulis) from contaminated sites in the UK. Aquat Toxicol 42:169–185

    Article  CAS  Google Scholar 

  • El-Gendy KS, Radwan MA, Gad AF (2011) Feeding and growth responses of the snail Theba pisana to dietary metal exposure. Arch Environ Contam Toxicol 60:272–280

    Article  CAS  Google Scholar 

  • El-Gendy KS, Radwan MA, Gad AF, Khamis AE, Eshra EH (2019a) Physiological traits of land snails Theba pisana as simple endpoints to assess the exposure to some pollutants. Environ Sci Pollut Res 26: In Press. https://doi.org/10.1007/s11356-019-04180-8

  • El-Gendy KS, Radwan MA, Gad AF, Khamis AE, Eshra EH (2019b) Use of multiple endpoints to investigate the ecotoxicological effects of abamectin and thiamethoxam on Theba pisana snails. Ecotoxicol Environ Saf 167:242–249

    Article  CAS  Google Scholar 

  • Fourie F, Reinecke SA, Reinecke AJ (2007) The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotox Environ Saf 67:361–368

    Article  CAS  Google Scholar 

  • Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A Review. J Agric Food Chem 51:4504–4526

    Article  CAS  Google Scholar 

  • Gad AF, Radwan MA, EL-Gendy KS, Eshra EH, Seehy MA, Khamis A (2016) Genotoxic potential of some pollutants in Theba pisana snails using the micronucleus test. Inter J Zool Invest 2: 197–205

  • Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10:5–23

    Article  CAS  Google Scholar 

  • Galloway TS, Sanger RC, Smith KL, Fillman G, Readman JW, Ford TE, Depledge MH (2002) Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays. Environ Sci Technol 36:2219–2226

    Article  CAS  Google Scholar 

  • Ghorbel I, Maktouf S, Kallel C, Ellouze Chaabouni S, Boudawara T, Zeghal N (2015) Disruption of erythrocyte antioxidant defence system, hematological parameters, indication of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide. Chem Biol Interact 236:31–40

    Article  CAS  Google Scholar 

  • Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, Motelica-Heino M (2015) Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. Environ Sci Pollut Res 22:6390–6406

    Article  CAS  Google Scholar 

  • Itziou A, Dimitriadis VK (2011) Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers. Sci Total Environ 409:1181–1192

    Article  CAS  Google Scholar 

  • Krautter GR, Mast RW, Alexander HC, Thompson CM (1986) Acute toxicity tests with acrylamide monomer and macroinvertebrates and fish. Environ Toxicol Chem 5:373–377

    Article  CAS  Google Scholar 

  • Krishna G, Muralidhara (2015) Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicol Teratol 49:49–58

    Article  CAS  Google Scholar 

  • Larguinho M, Cordeiro A, Diniz MS, Costa PM, Baptista PV (2014) Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ Res 135:55–62

    Article  CAS  Google Scholar 

  • Li X, Liu H, Lv L, Yan H, Yuan Y (2018) Antioxidant activity of blueberry anthocyanin extracts and their protective effects against acrylamide-induced toxicity in HepG2 cells. Int J Food Sci Technol 53:147–155

    Article  CAS  Google Scholar 

  • Lowry OH, Rasebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Maity S, Roy S, Chaudhury S, Bhattacharya S (2008) Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environ Pollut 151:1–7

    Article  CAS  Google Scholar 

  • Nair V, Turner GE (1984) The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids 19:804–805

    Article  CAS  Google Scholar 

  • Negrão-Corrêa D, Pereira CAJ, Rosa FM, Martins-Souza RL, Andrade ZA, Coelho PMZ (2007) Molluscan response to parasite, Biomphalaria and Schistosoma mansoni interaction. Invertebr Surviv J 4:101–111

    Google Scholar 

  • Olafsen JA (1996) Lectins: models of natural and induced molecules in invertebrates. In: Cooper EL (Ed) Advances in Comparative and Environmental Physiology: invertebrate immune responses, cell activities and the environment. 24: 49–76

  • Owens WI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–711

    Article  CAS  Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J 24:1935–1946

    Article  CAS  Google Scholar 

  • Pipe RK (1992) Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev Comp Immunol 16:111–122

    Article  CAS  Google Scholar 

  • Pipe RK, Coles JA (1995) Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol 5:581–595

    Article  Google Scholar 

  • Pipe RK, Coles JA, Farley SR (1995) Assays for measuring immune response in the mussel Mytilus edulis. Tech. Fish Immunol 4:93–100

    Google Scholar 

  • Pipe RK, Coles JA, Carissan FMM, Ramanathan K (1999) Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aqua Toxicol 46:43–54

    Article  CAS  Google Scholar 

  • Prased SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy. NeuroToxicol. 33:1254–1264

    Article  CAS  Google Scholar 

  • Radwan MA, El-Gendy KS, Gad AF (2010a) Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere 79:40–46

    Article  CAS  Google Scholar 

  • Radwan MA, El Gendy KS, Gad AF (2010b) Oxidative stress biomarkers in the digestive gland of Theba pisana exposed to heavy metals. Arch Environ Contam Toxicol 58:828–835

    Article  CAS  Google Scholar 

  • Rahmankulova, Kopteva (1976) Kliniceskaja biohimija, Belarus kn. Minsks 7:218

    Google Scholar 

  • Rajeh N, Hamdy A, El-Assoli S (2014) Protective effect of 5-aminosalicylic acid on acrylamide toxicity in the testis and blood leukocytes of the rat. Kuwait Med J 46:32–43

    Google Scholar 

  • Raju J, Sondagar C, Roberts J, Aziz SA, Caldwell D, Vavasour E, Mehta R (2011) Dietary acrylamide does not increase colon aberrant crypt foci formation in male F344 rats. Food Chem Toxicol 49:1373–1380

    Article  CAS  Google Scholar 

  • Rank J, Jensen K (2003) Comet assay on gill and hemocytes from the blue mussel Mytilus edulis. Ecotoxicol Environ Saf 54:323–329

    Article  CAS  Google Scholar 

  • Ratcliffe NA, Nigam Y, Mello CB, Garcia ES, Azambuja P (1996) Trypanosoma cruzi erythrocyte agglutinins: a comparative study of occurance and properties in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 83:83–93

    Article  CAS  Google Scholar 

  • Regoli F, Gorbi S, Fattorini D, Tedesco S, Notti A, Machella N, Bocchetti R, Benedetti M, Piva F (2006) Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ Health Persp 114:63–69

    Article  CAS  Google Scholar 

  • Rockett JC, Kim SJ (2005) Biomarkers of reproductive toxicity. Cancer Biomarkers 1:93–108

    Article  CAS  Google Scholar 

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. Rome, FAO 142 pp.

    Google Scholar 

  • Russo J, Madec L (2007) Haemocyte apoptosis as a general cellular immune response of the snail, Lymnaea stagnalis, to a toxicant. Cell Tissue Res 328:431–441

    Article  CAS  Google Scholar 

  • Snyman RG, Reinecke AJ, Reinecke SA (2002) Field application of a lysosomal assay as biomarker of copper oxychloride exposure, in the snail Helix aspersa. Bull Environ Contam Toxicol 69:117–122

    Article  CAS  Google Scholar 

  • Soderhall K, Cerenius L, Johansson MW (1996) The prophenoloxidase activating system in invertebrates. In: Soderhall K, Iwanaga S, Vasta GR (eds) New directions in invertebrate immunology. SOS Publications, Fair Haven, pp 229–253

    Google Scholar 

  • Subaraja M, Vanisree AJ (2015) Cerebral ganglionic variations and movement behaviors of Lumbricus terrestris on exposure to neurotoxin. Ann Neurosci 22(4):199–207

    CAS  Google Scholar 

  • Suresh K, Mohandas A (1990) Hemolymph acid phosphatase activity pattern in copper-stressed bivalves. J Invert Pathol 55:118–125

  • Uliasz TF, Hewett SJ (2000) A microtiter trypan blue absorbance assay for quantitative determination of excitoxic neuronal injury in cell culture. J Neurosci Methods 100:157–163

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Phar 13:57–149

    Article  Google Scholar 

  • Vessey DA, Boyer TD (1984) Differential activation and inhibition of different forms of rat liver glutathione S-transferase by the herbicides 2,4-dichloro phenoxy acetate (2,4-D) and 2,4,S trichloro phenoxy acetate (2,4, S-T). Toxicol Appl Pharmacol 73:492–499

    Article  CAS  Google Scholar 

  • Yousef MI, El-Demerdash FM (2006) Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 219:133–141

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Radwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, M.A., El-Gendy, K.S., Gad, A.F. et al. Ecotoxicological biomarkers as investigating tools to evaluate the impact of acrylamide on Theba pisana snails. Environ Sci Pollut Res 26, 14184–14193 (2019). https://doi.org/10.1007/s11356-019-04784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04784-0

Keywords

Navigation