Skip to main content
Log in

Effects of low glyphosate-based herbicide concentrations on endocrine-related gene expression in the decapoda Macrobrachium potiuna

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Glyphosate-based herbicides (GBH) are the most used herbicides worldwide and are considered as endocrine-disrupting compounds (EDC) for non-target organisms. However, effects of GBH on their endocrine systems remain poorly understood. Thus, the aim of this study was to assess the effects of low concentrations of Roundup WG® on growth and reproduction process molecules in both males and females of the decapod crustacean Macrobrachium potiuna, by the relative transcript expression levels of the ecdysteroid receptor (EcR), the molt-inhibiting hormone (MIH), and the vitellogenin (Vg) genes. Prawns were exposed to three concentrations of GBH (0.0065, 0.065, and 0.28 mg L−1) for 7 and 14 days. The results revealed that only in males the three genes transcript levels were influenced by the GBH concentration, time of exposure, and the interaction between the concentrations and time of exposure, suggesting that males were more sensitive to GBH than females. For males, after 7 days of exposure at 0.065 mg L−1, EcR and MIH were over-expressed, while the Vg expression was only over-expressed after 14 days. The present study highlighted that GBH impacted endocrine systems of M. potiuna. Moreover, EcR and MIH gene expressions could be promising EDC biomarkers of exposure in crustaceans. These results also indicate that GBH concentrations, considered secure by regulatory agencies, should be reviewed to minimize the effects on non-target organisms.

Potential effects of glyphosate-based herbicides on the endocrine system of decapods Macrobrachium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34:458–479. https://doi.org/10.1002/jat.2997

    Article  CAS  Google Scholar 

  • Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YMR, Nazari EM (2014) Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate. J Toxicol Environ Heal A 77:405–414. https://doi.org/10.1080/15287394.2014.880393

  • Avigliano L, Alvarez N, Mac LC, Rodriguez EM (2014) Effects of glyphosate on egg incubation, larvae hatching, and ovarian rematuration in the estuarine crab Neohelice granulata. Environ Toxicol Chem 33:1879–1884. https://doi.org/10.1002/etc.2635

    Article  CAS  Google Scholar 

  • Avigliano L, Canosa IS, MEdesani DA, Rodríguez EM (2018) Effects of glyphosate on somatic and ovarian growth in the estuarine crab Neohelice granulata, during the pre-reproductive period. Water Air Soil Pollut 229:1–9. https://doi.org/10.1016/j.cbpc.2016.10.011

    Article  CAS  Google Scholar 

  • Bolognesi C, Carrasquilla G, Volpi S, Solomon KR, Marshall EJP (2009) Biomonitoring of genotoxic risk in agricultural workers from five Colombian regions: association to occupational exposure to glyphosate. J Toxic Environ Health A 72:986–997. https://doi.org/10.1080/15287390902929741

    Article  CAS  Google Scholar 

  • Bonfanti P, Saibene M, Bacchetta R, Mantecca P, Colombo A (2018) A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis. Aquat Toxicol 195:103–113. https://doi.org/10.1016/j.aquatox.2017.12.007

    Article  CAS  Google Scholar 

  • Boulangé-Lecomte C, Xuereb B, Trémolet G, Duflot A, Giusti N, Olivier S, Legrand E, Forget-Leray J (2017) Controversial use of vitellogenin as a biomarker of endocrine disruption in crustaceans: new adverse pieces of evidence in the copepod Eurytemora affinis. Comp Biochem Physiol C 201:66–75. https://doi.org/10.1016/j.cbpc.2017.09.011

    Article  CAS  Google Scholar 

  • CONAMA (2005) Conselho Nacional Do Meio Ambiente. Resolução número 357. Accessed in 03/04/2018. Available in: http://www.mma.gov.br/port/conama/ legiabre.cfm?codlegi-459

  • Conrad A, Schröter-Kermani C, Hoppe HW, Rüther M, Pieper S, Kolossa-Gehring M (2017) Glyphosate in German adults – time trend (2001 to 2015) of human exposure to a widely used herbicide. Int J Hyg Environ Health 220:8–16. https://doi.org/10.1016/j.ijheh.2016.09.016

    Article  CAS  Google Scholar 

  • de Melo MS, dos Santos TPG, Jaramillo M, Nezzi L, Rauh Muller YM, Nazari EM (2019) Histopathological and ultrastructural indices for the assessment of glyphosate-based herbicide cytotoxicity in decapod crustacean hepatopancreas. Aquat Toxicol 210:207–214. https://doi.org/10.1016/j.aquatox.2019.03.007

    Article  CAS  Google Scholar 

  • Deecaraman M, Subramoniam T (1983) Endocrine regulation of ovarian maturation and cement glands activity in a stomatopod crustacean Squilla holoschista. P Indian As-Anim Sci 92:399–408

  • Donohoe RM, Curtis LR (1996) Estrogenic activity of chlordecone, 0,p’-DDT and 0,p’-DDE in juvenile rainbow trout: induction of vitellogenesis and interaction with hepatic estrogen binding sites. Aquat Toxicol 36:31–52

    Article  CAS  Google Scholar 

  • Flouriot G, Pakdel F, Valotaire Y (1996) Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol Cell Endocrinol 124:173–183

    Article  CAS  Google Scholar 

  • Folmar LC, Sanders HO, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269–278

    Article  CAS  Google Scholar 

  • Freire R, Schneider RM, De FFH et al (2012) Monitoring of toxic chemical in the basin of Maringá stream. Acta Sci Technol 34:295–302. https://doi.org/10.4025/actascitechnol.v34i3.10302

    Article  CAS  Google Scholar 

  • Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191. https://doi.org/10.1016/j.tox.2009.06.006

    Article  CAS  Google Scholar 

  • Gismondi E (2018) Identification of molt-inhibiting hormone and ecdysteroid receptor cDNA sequences in Gammarus pulex, and variations after endocrine disruptor exposures. Ecotoxicol Environ Saf 158:9–17. https://doi.org/10.1016/j.ecoenv.2018.04.017

    Article  CAS  Google Scholar 

  • Gismondi E, Joaquim-Justo C (2019) Relative expression of three key genes involved in the hormonal cycle of the freshwater amphipod, Gammarus pulex. J Exp Zool 331:1–7. https://doi.org/10.1002/jez.2256

    Article  CAS  Google Scholar 

  • Gismondi E, Cossu-Leguille C, Beisel J (2013) Do male and female gammarids defend themselves differently during chemical stress? Aquat Toxicol 140–141:432–438. https://doi.org/10.1016/j.aquatox.2013.07.006

    Article  CAS  Google Scholar 

  • Gunarathna S, Gunawardana B, Jayaweera M, Zoysa K (2018) Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J Environ Sci Health B 0:1–9. https://doi.org/10.1080/03601234.2018.1480157

    Article  CAS  Google Scholar 

  • Hammond B, Katzenellenbogent BS, Krauthammer N, Mcconnell J (1979) Estrogenic activity of the insecticide chlordecone (Kepone) and interaction with uterine estrogen receptors. Proc Natl Acad Sci U S A 76:6641–6645

    Article  CAS  Google Scholar 

  • Hong Y, Yang X, Huang Y, Yan G, Cheng Y (2018) Assessment of the oxidative and genotoxic effects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis. Chemosphere 210:896–906. https://doi.org/10.1016/j.chemosphere.2018.07.069

    Article  CAS  Google Scholar 

  • Horion S, Thomé JP, Gismondi É (2015) Changes in antitoxic defense systems of the freshwater amphipod Gammarus pulex exposed to BDE-47 and BDE-99. Ecotoxicology 24:959–966. https://doi.org/10.1007/s10646-015-1438-4

    Article  CAS  Google Scholar 

  • Hyne RV (2011) Review of the reproductive biology of amphipods and their endocrine regulation: identification of mechanistic pathways for reproductive toxicants. Environ Toxicol Chem 30:2647–2657. https://doi.org/10.1002/etc.673

  • Jubeaux G, Simon R, Salvador A, Quéau H, Chaumot A, Geffard O (2012) Vitellogenin-like proteins in the freshwater amphipod Gammarus fossarum (Koch , 1835): functional characterization throughout reproductive process, potential for use as an indicator of oocyte quality and endocrine disruption biomarker in males. Aquat Toxicol 112(113):72–82. https://doi.org/10.1016/j.aquatox.2012.01.011

    Article  CAS  Google Scholar 

  • Kasuba V, Milie M, Rozgaj R et al (2017) Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ Sci Pollut R 24:19267–19281. https://doi.org/10.1007/s11356-017-9438-y

  • Lafontaine A, Gismondi E, Boulangé-lecomte C et al (2016a) Effects of chlordecone on 20-hydroxyecdysone concentration and chitobiase activity in a decapod crustacean, Macrobrachium rosenbergii. Aquat Toxicol 176:53–63. https://doi.org/10.1016/j.aquatox.2016.04.006

    Article  CAS  Google Scholar 

  • Lafontaine A, Hanikenne M, Boulangé-Lecomte C, Forget-Leray J, Thomé JP, Gismondi E (2016b) Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone. Environ Sci Pollut Res 23:20661–20671. https://doi.org/10.1007/s11356-016-7273-1

    Article  CAS  Google Scholar 

  • Le TH, Lim ES, Lee SK et al (2010) Effects of glyphosate and methidathion on the expression of the Dhb, Vtg, Arnt, CYP4 and CYP314 in Daphnia magna. Chemosphere 79:67–71. https://doi.org/10.1016/j.chemosphere.2009.12.067

    Article  CAS  Google Scholar 

  • LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81. https://doi.org/10.1007/s10646-006-0115-z

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Luo X, Chen T, Zhong M, Jiang X, Zhang L, Ren C, Hu C (2015) Peptides differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei). Peptides 68:58–63. https://doi.org/10.1016/j.peptides.2014.11.002

    Article  CAS  Google Scholar 

  • Martínez-Paz P, Morales M, Urien J, Morcillo G, Martínez-Guitarte JL (2017) Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae Pedro. Ecotoxicol Environ Saf 140:185–190. https://doi.org/10.1016/j.ecoenv.2017.02.047

    Article  CAS  Google Scholar 

  • Mattson MP, Spaziani E (1985) 5-Hydroxytryptamine mediates release of molt-inhibiting hormone activity from isolated crab eyestalk ganglia. Biol Bull 169:246–255

    Article  CAS  Google Scholar 

  • Mattson MP, Spaziani E (1986) Evidence for ecdysteroid feedback on release of molt-inhibiting hormone from crab eyestalk ganglia. Biol Bull 171:264–273

    Article  CAS  Google Scholar 

  • Mazurová E, Hilscherová K, Triebskorn R, Köhler HR, Maršálek B, Bláha L (2008) Endocrine regulation of the reproduction in crustaceans: identification of potential targets for toxicants and environmental contaminants. Biologia 63:139–150. https://doi.org/10.2478/s11756-008-0027-x

  • Mensah PK, Muller WJ, Palmer CG (2012) Using growth measures in the freshwater shrimp Caridina nilotica as biomarkers of Roundup® pollution of South African freshwater systems. Phys Chem Earth 50–52:262–268. https://doi.org/10.1016/j.pce.2012.08.003

    Article  Google Scholar 

  • Mills PJ, Kania-Korwel I, Fagan H et al (2017) Excretion of the herbicide glyphosate in older adults between 1993 and 2016. J Am Med Assoc 318:1610–1611

    Article  Google Scholar 

  • Morales M, Martínez-paz P, Martín R et al (2014) Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat Toxicol 157:1–9. https://doi.org/10.1016/j.aquatox.2014.09.009

    Article  CAS  Google Scholar 

  • Mu X, LeBlanc GA (2002) Environmental antiecdysteroids alter embryo development in the crustacean Daphnia magna. J Exp Zool 292:287–292. https://doi.org/10.1002/jez.10020

    Article  CAS  Google Scholar 

  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:1–13. https://doi.org/10.1186/s12940-016-0117-0

    Article  CAS  Google Scholar 

  • Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106. https://doi.org/10.1016/j.etap.2011.09.006

    Article  CAS  Google Scholar 

  • Okada E, Pérez D, De GE et al (2018) Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environ Sci Pollut Res 25:15120–15132

    Article  CAS  Google Scholar 

  • Omran NE, Salama WM (2013) The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 32:1–10. https://doi.org/10.1177/0748233713506959

    Article  CAS  Google Scholar 

  • Osten JR-V, Dzul-Caamal R (2017) Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int J Environ Res Public Health 14:1–13. https://doi.org/10.3390/ijerph14060595

    Article  CAS  Google Scholar 

  • Pereira AG, Jaramillo ML, Remor AP, Latini A, Davico CE, da Silva ML, Müller YMR, Ammar D, Nazari EM (2018) Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. Chemosphere 209:353–362. https://doi.org/10.1016/j.chemosphere.2018.06.075

    Article  CAS  Google Scholar 

  • Pinto E, Soares AG, Ferreira IM (2018) Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by in situ derivatization–dispersive liquid–liquid microextraction combined with UPLC-MS/MS. Anal Methods 10(5):554–561

  • Planelló R, Martínez-Guitarte JL, Morcillo G (2008) The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71:1870–1876. https://doi.org/10.1016/j.chemosphere.2008.01.033

    Article  CAS  Google Scholar 

  • Planelló R, Herrero O, Martínez-Guitarte JL, Morcillo G (2011) Comparative effects of butyl benzyl phthalate (BBP) and di (2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquat Toxicol 105:62–70. https://doi.org/10.1016/j.aquatox.2011.05.011

    Article  CAS  Google Scholar 

  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 716:716–720. https://doi.org/10.1289/ehp.7728

    Article  CAS  Google Scholar 

  • Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Phys A 146:661–671. https://doi.org/10.1016/j.cbpa.2006.04.030

  • Sanchez W, Burgeot T, Porcher JM (2013) A novel “integrated biomarker response” calculation based on reference deviation concept. Environ Sci Pollut Res 20:2721–2725. https://doi.org/10.1007/s11356-012-1359-1

    Article  CAS  Google Scholar 

  • Sanders MB, Billinghust Z, Depledge MH, Clare AC (2005) Larval development and vitellin-like protein expression in Palaemon elegans larvae following. Integr Environ Assess Manag 45:51–60

    CAS  Google Scholar 

  • Short S, Yang G, Kille P, Ford AT (2014) Vitellogenin is not an appropriate biomarker of feminisation in a crustacean. Aquat Toxicol 153:89–97. https://doi.org/10.1016/j.aquatox.2013.11.014

    Article  CAS  Google Scholar 

  • Sinhorin VDG, Sinhorin AP, Teixeira JM dos S et al (2014) Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol Environ Saf 106:181–187. https://doi.org/10.1016/j.ecoenv.2014.04.040

    Article  CAS  Google Scholar 

  • Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE (2017) Ecdysone receptor agonism leading to lethal molting disruption in arthropods: review and adverse outcome pathway development. Environ Sci Technol 51:4142–4157. https://doi.org/10.1021/acs.est.7b00480

    Article  CAS  Google Scholar 

  • Soroka Y, Milner Y, Sagi A (2000) The hepatopancreas as a site of yolk protein synthesis in the prawn Macrobrachium rosenbergii. Invertebr Reprod Dev 37:61–68. https://doi.org/10.1080/07924259.2000.9652400

    Article  CAS  Google Scholar 

  • Soso AB, Barcellos LJG, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Anziliero D, Lima M, Silva LB, Ritter F, Bedin AC, Finco JA (2007) Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundiá (Rhamdia quelen). Environ Toxicol Pharmacol 23:308–313. https://doi.org/10.1016/j.etap.2006.11.008

    Article  CAS  Google Scholar 

  • Souty C, Besse G, Picaud JL (1982) Ecdysone stimulates the rate of vitellogenin release in hemolymph of the terrestrial crustacean isopoda Porcellio dilatatus. Comptes rendus de l'Académie des Sciences Série III-Sciences de la Vie-Life Sciences III 294:1057–1059

  • Sroda S, Cossu-leguille C (2011) Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli. Chemosphere 83:538–544. https://doi.org/10.1016/j.chemosphere.2010.12.023

    Article  CAS  Google Scholar 

  • Subramoniam T (2011) Mechanisms and control of vitellogenesis in crustaceans. Fish Sci 77:1–21. https://doi.org/10.1007/s12562-010-0301-z

    Article  CAS  Google Scholar 

  • Tillmann M, Schulte-oehlmann U, Duft M (2001) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part III: cyproterone acetate and vinclozolin as antiandrogens. Ecotoxicology 10:373–388

    Article  CAS  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197. https://doi.org/10.1016/S0045-6535(03)00306-0

    Article  CAS  Google Scholar 

  • USEPA. (2009) United States Environmental Protection Agency, National Primary Drinking Water Regulation, EPA 816-F-09-0042009. (Washington)

  • Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111:994–1006. https://doi.org/10.1289/ehp.5494

    Article  CAS  Google Scholar 

  • Xia S, Zhao Y-B, Yang M-Q, Jiang-Ying H (2013) Induction of vitellogenin gene expression in medaka exposed to glyphosate and potential molecular mechanism. China Environ Sci 33:1656–1663

    CAS  Google Scholar 

  • Xuereb B, Bezin L, Chaumot A, Budzinski H, Augagneur S, Tutundjian R, Garric J, Geffard O (2011) Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization in females and potential for use as an endocrine disruption biomarker in males. Ecotoxicology 20:1286–1299. https://doi.org/10.1007/s10646-011-0685-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was conducted during a scholarship supported by the Programa de Doutorado Sanduíche no Exterior from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PDSE 47/2017) at the University of Liège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gismondi.

Ethics declarations

The sampling procedure adopted in this study was approved by the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA; permanent license no. 15294-1/2008).

Additional information

Responsible editor: Cinta Porte

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• GBH was able to upregulate the transcript expression levels of EcR and MIH.

• Males of Macrobrachium potiuna were more affected by the GBH exposure than females.

• Integrated biomarker response (IBR) shows an induction of biomarkers for males.

Electronic supplementary material

ESM 1

(PDF 795 kb).

ESM 2

(PDF 349 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, M.S., Nazari, E.M., Joaquim-Justo, C. et al. Effects of low glyphosate-based herbicide concentrations on endocrine-related gene expression in the decapoda Macrobrachium potiuna. Environ Sci Pollut Res 26, 21535–21545 (2019). https://doi.org/10.1007/s11356-019-05496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05496-1

Keywords

Navigation