Skip to main content
Log in

Effect of phosphogypsum addition in the composting process on the physico-chemical proprieties and the microbial diversity of the resulting compost tea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphoric acid production and olive oil production are among the most important economical sectors in Tunisia. However, they generate huge amounts of wastes (phosphogypsum, olive mill waste water, and olive pomace). In a previous study, we used phosphogypsum (PG), in co-composting with organic wastes. Three composts were produced; their PG content was of 0 (AT), 10 (A10), and 30% (A30). In the present study, we focused on their derived compost teas. The physico-chemical characterization of the different compost teas showed that those from A10 and A30 composts presented higher P and Ca contents than that from control one (AT). The microbial characterization using DGGE showed a noticeable microbial diversity in the different compost teas and that the addition of 10% and 30% PG in the compost had different effects on the compost tea microbial diversity. The identification results showed that the addition of 10 and 30% of PG did not affect the presence of PGPR (plant growth-promoting rhizobacteria) and fungal soil antagonists in the compost teas. Two PGPRs were isolated from AT and A30 compost teas, and their effect on the growth of potato plants in vitro was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril JM, García-Tenorio R, Enamorado SM, Hurtado MD, Andreu L, Delgado A (2008) The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and cd contents in soils and tomato fruit. Sci Total Environ 403:80–88. https://doi.org/10.1016/j.scitotenv.2008.05.013

    Article  CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315

  • Ajam L, Ben Ouezdou M, Sfar Felfoul H, El Mensi R (2009) Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Constr Build Mater 23:3240–3247. https://doi.org/10.1016/j.conbuildmat.2009.05.009

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  • Anastasi A, Varese GC, Voyron S, Scannerini S, Marchisio VF (2004) Characterization of fungal biodiversity in compost and vermicompost. Comp Sci Util 12:185–191. https://doi.org/10.1080/1065657X.2004.10702179

    Article  Google Scholar 

  • Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44. https://doi.org/10.1080/15572536.2006.11832836

    Article  Google Scholar 

  • Artz RRE, Anderso IC, Chapman SJ, Hagn A, Schloter M, Potts JM, Campbell CD (2007) Changes in fungal community composition in response to Vegetational succession during the natural regeneration of cutover peatlands. Microb Ecol 54(3):508–522. https://doi.org/10.1007/s00248-007-9220-7

    Article  CAS  Google Scholar 

  • Azabou S, Mechichi T, Patel BKC, Sayadi S (2007) Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source. J Hazard Mater 140:264–270. https://doi.org/10.1016/j.jhazmat.2006.07.073

    Article  CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98. https://doi.org/10.1016/S0065-2164(09)01202-7

    Article  CAS  Google Scholar 

  • Berenguer J, Rodríguez-Tudela LJ, Richard C, Alvarez M, Sanz MA, Gaztelurrutia L, Ayats J, Martinez-Suarez JV (1997) Deep infections caused by Scedosporium prolificans: areport on 16 cases in Spain and a review of the literature. Medicine 76:256–265. https://doi.org/10.1097/00005792-199707000-00004

    Article  CAS  Google Scholar 

  • Berg (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  Google Scholar 

  • Bess VH (2000) Understanding compost tea. Biocycle 41(10):71–72

    Google Scholar 

  • Chen M, Yan Y, Zhang W, Lu W, Wang J, Ping S, Lin M (2011) Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803. J Bacteriol 193(21):6095. https://doi.org/10.1128/JB.06061-11

    Article  CAS  Google Scholar 

  • Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plantassociated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82:1734–1744

  • Chilosi G, Esposito A, Castellani F, Stanzione V, Aleandri MP, Dell’Unto D, Tomassini A, Vannini A, Altieri R (2017) Characterization and use of olive mill waste compost as peat surrogate in substrate for cultivation of Photinia potted plants: assessment of growth performance and In Vitro Suppressiveness. Waste Biomass Valor:1–10. https://doi.org/10.1007/s12649-017

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen SA, McGarrell DM, Marsh T, Garrity GM, Tiedje M (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 647(37):141–145. https://doi.org/10.1093/nar/gkn879

    Article  CAS  Google Scholar 

  • Daami-Remadi M, Dkhili I, Jabnoun-Khiareddine H, El Mahjoub M (2012) Biological control of potato leak with antagonistic fungi isolated from compost teas and solarized and non-solarized soils. Pest Technol 6:32–40

    Google Scholar 

  • Elloumi N, Zouari M, Chaari L, Ben Abdallah F, Woodward S, Kallel M (2015) Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res 22:14829–14840. https://doi.org/10.1007/s11356-015-4716-z

    Article  CAS  Google Scholar 

  • El-Mrabet R, Abril JM, Periáñez R, Manjón G, García-Tenorio R, Delgado A, Andreu L (2003) Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soil from South-Western Spain. J Environ Qual 32:1262–1268. https://doi.org/10.2134/jeq2003.1262

    Article  CAS  Google Scholar 

  • Farmer JJ, Fanning GR, Davis BR, O'hara CM, Riddle C, Hickman-Brenner FW, Asbury MA, Lowery VA, Brenner DJ (1985) Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21:77–81

    CAS  Google Scholar 

  • Gabhane J, Prince William SPM, Bidyadhar R, Bhilawe P, Anand D, Vaidya AN, Wate SR (2012) Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour Technol 114:382–388. https://doi.org/10.1016/j.biortech.2012.02.040

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118

  • Gittel AL, Mussmann M, Sass H, Cypionka H, Könneke M (2008) Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Environ Microbiol 10(10):2645–2658. https://doi.org/10.1111/j.1462-2920.2008.01686.x

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. https://doi.org/10.1080/07352680701572966

    Article  CAS  Google Scholar 

  • Grantina-Ievina L, Andersone U, Berkolde-Pīre D, Nikolajeva V, Ievinsh G (2013) Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins. Appl Microbiol Biotechnol 97(24):10541–10554. https://doi.org/10.1007/s00253-013-4825-x

    Article  CAS  Google Scholar 

  • Guo RF, Li DC (2006) Molecular cloning and expression of a chitinases gene from the thermophilic fungus Thermomyces lanuginosus. Acta Microbiol Sin 46:99–103

    CAS  Google Scholar 

  • Hao X, Larney FJ, Chang C, Travis GR, Nichol CK, Bremer E (2005) The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting. J Environ Qual 34(3):774–781. https://doi.org/10.2134/jeq2004.0388

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hu L, Cao L, Zhang R (2014) Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World J Microbiol Biotechnol 30(3):1085–1092. https://doi.org/10.1007/s11274-013-1528-5

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter DK (2012) Pseudomonas kuykendallii sp. nov.: a novel γ-proteobacteria isolated from a hexazinone degrading bioreactor. Curr Microbiol 65(2):170–175. https://doi.org/10.1007/s00284-012-0141-4

    Article  CAS  Google Scholar 

  • Hurtado MD, Enamorado SM, Andreu A, Delgado A, Abril JM (2011) Drain flow and related salt losses as affected by phosphogypsum amendment in reclaimed marsh soils from SW Spain. Geoderma 161:43–49. https://doi.org/10.1016/j.geoderma.2010.12.004

    Article  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. https://doi.org/10.1111/j.1469-8137.2009.02990.x

    Article  CAS  Google Scholar 

  • Kammoun M, Ghorbel I, Charfeddine S, Kamoun L, Gargouri-Bouzid R, Nouri-Ellouz O (2017) The positive effect of phosphogypsum-supplemented composts on potato plant growth in the field and tuber yield. J Environ Manag 200:475–483. https://doi.org/10.1111/j.1469-8137.2009.02990.x

    Article  CAS  Google Scholar 

  • Khot GG, Tauro P, Dadarwal KH (1996) Rhizobacteria from chickpea (cicer arietinum L.) rhizosphere effective in wilt control and promote nodulation. Indian J Microbiol 36:217–222

    Google Scholar 

  • King EO, Ward MK, Raney DC (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Tientze M, Schroth MN (1980) Enhanced plant-growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886. https://doi.org/10.1038/286885a0

    Article  CAS  Google Scholar 

  • Ksheem AM, Bennett JML, Antille DL, Raine SR (2015) Towards a method for optimized extraction of soluble nutrients from fresh and composted chicken manures. Waste Manag 45:76–90. https://doi.org/10.1016/j.wasman.2015.02.011

    Article  CAS  Google Scholar 

  • Kück U, Bloemendal S, Teichert I (2014) Putting fungi to work: harvesting a cornucopia of drugs, toxins, and antibiotics. PLoS Pathog 10:e1003950. https://doi.org/10.1371/journal.ppat.1003950

    Article  CAS  Google Scholar 

  • Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD (2014) An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol 11:132–144. https://doi.org/10.1016/j.funeco.2014.05.007

    Article  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls and of leaf extracts in different solvents. Biochem Soc Trans 11(5):591–592

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57(2):510–516

    CAS  Google Scholar 

  • Liu QQ, Li XL, Rooney PR, Du ZJ, Chen GJ (2014) Tangfeifania diversioriginum gen. Nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 64:3473–3477. https://doi.org/10.1099/ijs.0.066902-0

    Article  CAS  Google Scholar 

  • Marín F, Santos M, Diánez F, Carretero F, Gea FJ, Yau JA, Navarro MJ (2013) Characters of compost teas from different sources and their suppressive effect on fungal phytopathogens. World J Microbiol Biotechnol 29(8):1371–1382

  • May DA, Mortvedt JE (1986) Crop response to soil applications of phosphogypsum. J Environ Qual 15:78–81. https://doi.org/10.2134/jeq1986.00472425001500010018x

    Article  Google Scholar 

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing plant diseases. Waste Manag 34(3):607–622

  • Mekki A, Anderson M, Benzina AE (2008) Valorization of olive mill waste water by its incorporation in building bricks. J Hazard Mater 158:308–315. https://doi.org/10.1016/j.jhazmat.2008.01.104

    Article  CAS  Google Scholar 

  • Mengesha WK, Gill WM, Powell SM, Evans KJ, Barry KM (2017) A study of selected factors affecting efficacy of compost tea against several fungal pathogens of potato. J Appl Microbiol 123(3):732–747. https://doi.org/10.1111/jam.13530

    Article  CAS  Google Scholar 

  • Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One 11(2):e0148130. https://doi.org/10.1371/journal.pone.0148130

    Article  CAS  Google Scholar 

  • Murashige T, Skoog E (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Naidu Y, Sariah M, Jugah K, Siddiqui Y (2010) Microbial starter for the enhancement of biological activity of compos tea. Int J Agric Biol 12:51–56

  • Nayak S, Mishra CSK, Guru BC, Rath M (2011) Effects of phosphogypsum amendment on soil physico-chemical properties, microbial and soil enzyme activities. J Environ Biol 32(5):613–617

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. https://doi.org/10.1007/s002530051457

    Article  CAS  Google Scholar 

  • Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M (2006) The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 89:188–198. https://doi.org/10.1016/j.jenvrad.2006.05.005

    Article  CAS  Google Scholar 

  • Pramanik K, Ghosh PK, Ghosh A, Sarkar A, Maiti TK (2016) Characterization of PGP traits of a hexavalent chromium resistant Raoultella sp. isolated from the rice field near Industrial Sewage of Burdwan. Soil Sediment Contam Int J 25:313–331

  • Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK (2017) Characterization of cadmiumresistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res Int 24:24419–24437

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

  • Ramos E, Ramírez-Bahena MH, Valverde A, Velázquez E, Zúñiga D, Velezmoro C, Peix A (2013) Pseudomonas punonensis sp. nov., isolated from straw. Int J Syst Evol Microbiol 63:1834–1839. https://doi.org/10.1099/ijs.0.042119-0

    Article  CAS  Google Scholar 

  • Rasband WS (1997–2006) IMAGEJ, U.S. National Institutes of Health, Bethesda, MD. http://rsb.info.nih.gov/ij/

  • Riggle D (1996) Compost teas in agriculture. BioCycle 37:65–67

    Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Saadaoui E, Ghazel G, Ben Romdhane C, Massoudi N (2018) Phosphogypsum: potential uses and problems. Inter J Environ Stud 74(4):558–567. https://doi.org/10.1080/00207233.2017.1330582

    Article  CAS  Google Scholar 

  • Samet M, Charfeddine M, Kammon L, Nouri Ellouze O, Bouzid G (2018) Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environ Sci Pollut Res 25:18921–18937. https://doi.org/10.1007/s11356-018-1960-z

    Article  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75:144–153. https://doi.org/10.1007/s10327-009-0154-4

    Article  Google Scholar 

  • Sindhu SS, Rakshiya YS, Sahu G (2009) Biological control of soil borne plant pathogens with rhizosphere bacteria. Pest Technol 3:10–21

    Google Scholar 

  • Siripornadulsil S, Siripornadulsil W Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Saf 94:103

  • Song MJ, Lee JH, Lee NY (2011) Fatal Scedosporium prolificans infection in a paediatric patient with acute lymphoblastic leukaemia. Mycoses 54(1):81–83. https://doi.org/10.1111/j.1439-0507.2009.01765.x

    Article  Google Scholar 

  • Tang Z, Lei T, Yu J, Shainberg I, Mamedov AI, Ben-Hur M, Levy GJ (2006) Runoff and Interrill Erosion in sodic soils treated with dry PAM and Phosphogypsum. Soil Sci Soc Am J 70:679–690. https://doi.org/10.2136/sssaj2004.0395

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5:42. https://doi.org/10.1186/s40168-017-0259-5

    Article  Google Scholar 

  • Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P (2018) Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ Sci Pollut Res 25(26):25690–25701

  • Welsch TT, Gillock ET (2011) Triclosan-resistant Bacteria isolated from feedlot and residential soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:436–440

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, p 315e332

  • Yi H, Chun J (2006) Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 56(6):1239–1244. https://doi.org/10.1099/ijs.0.64164-0

    Article  CAS  Google Scholar 

  • Zhang X, Sun Y, Bao J, He F, Xu X, Qi S (2012) Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 336(2):122–130. https://doi.org/10.1111/j.1574-6968.2012.02662.x

    Article  CAS  Google Scholar 

  • Zhang X, Zhong Y, Yang S, Zhang W, Xu M, Mab A, Zhuang G, Chen G, Liu W (2014) Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour Technol 170:183–195. https://doi.org/10.1016/j.biortech.2014.07.093

    Article  CAS  Google Scholar 

  • Zouch H, Karray F, Armougom F, Chifflet S, Hirschler-Réa A, Kharrat H, Kamoun L, Ben Hania W, Ollivier B, Sayadi S, Quéméneur M (2017) Microbial diversity in sulfate-reducing marine sediment enrichment cultures associated with anaerobic biotransformation of coastal stockpiled Phosphogypsum (Sfax, Tunisia). Front Microbiol 8:1583. https://doi.org/10.3389/fmicb.2017.01583

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Anne-Lise Haenni of the “Institut Jacques Monod”, Paris (France) for her critical reading and for improving the English of the manuscript.

Funding

This work was financially supported by the Tunisian Ministry of High Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Samet.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samet, M., Karray, F., Mhiri, N. et al. Effect of phosphogypsum addition in the composting process on the physico-chemical proprieties and the microbial diversity of the resulting compost tea. Environ Sci Pollut Res 26, 21404–21415 (2019). https://doi.org/10.1007/s11356-019-05327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05327-3

Keywords

Navigation