Skip to main content
Log in

Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review

  • Electrochemical advanced oxidation processes for removal of toxic/persistent organic pollutants from water
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals (OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by OH is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anquandah GAK, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45:10575–10581

    Article  CAS  Google Scholar 

  • Anquandah GAK, Sharma VK, Panditi VR, Gardinali PR, Kim H, Oturan MA (2013) Ferrate(VI) oxidation of propranolol: kinetics and products. Chemosphere 91:105–109

    Article  CAS  Google Scholar 

  • Aoun S, Bang GS, Koga T, Nonaka Y, Sotomura T, Taniguchi I (2003) Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem Commun 5:317–320

    Article  CAS  Google Scholar 

  • Arvinte A, Sesay A, Virtanen V (2011) Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes. Talanta 84:180–186

    Article  CAS  Google Scholar 

  • Barbier M, Breton T, Servat K, Grand E, Kokoh B, Kovensky J (2006) Selective TEMPO-catalyzed chemicals vs. electrochemical oxidation of carbohydrate derivatives. J Carbohydr Chem 25:253–266

    Article  CAS  Google Scholar 

  • Bennett D (2013) The intense sweetener world, Ehrenberg center for research in marketing. (http://www.lsbu.ac.uk/bus-ehrenberg/documents/High%20Intensity%20Sweeteners.pdf. Accessed on 28 May 2013

  • Brusick D, Grotz VL, Slesinski R, Kruger CL, Hayes AW (2010) The absence of genotoxicity of sucralose. Food Chem Toxicol 48:3067–3072

    Article  CAS  Google Scholar 

  • Buerge IJ, Keller M, Buser H-R, Müller MD, Poiger T (2011) Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater. Environ Sci Technol 45:615–621

    Article  CAS  Google Scholar 

  • Casbeer EM, Sharma VK, Zajickova Z, Dionysiou DD (2013) Kinetics and mechanism of oxidation of tryptophan by ferrate(VI). Environ Sci Technol 47:4572–4580

    Article  CAS  Google Scholar 

  • Das D, Sen PK, Das K (2007) Carbohydrate electro-oxidation on chemically prepared MnO2. J Electroanal Chem 611:19–25

    Article  CAS  Google Scholar 

  • Ferrer I, Thurman EM (2010) Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1217:4127–4134

    Article  CAS  Google Scholar 

  • Grice HC, Goldsmith LA (2000) Sucralose—an overview of the toxicity data. Food Chem Toxicol 38:S1–S36

    Article  CAS  Google Scholar 

  • Grotz VL, Munro IC (2009) An overview of the safety of sucralose. Regul Toxicol Pharmacol 55:1–5

    Article  CAS  Google Scholar 

  • Hayashi T, Sakurada I, Honda K, Motohashi S, Uchikura K (2012) Electrochemical detection of sugar-related compounds using boron-doped diamond electrodes. Anal Sci 28:127–134

    Article  CAS  Google Scholar 

  • Hoigne J, Bader H (1994) Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic compounds. Water Res 28:45–55

    Article  CAS  Google Scholar 

  • Hollender J, Zimmermann SG, Koepke S, Krauss M, Mcardell CS, Ort C, Singer H, Von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43:7862–7869

    Article  CAS  Google Scholar 

  • Hung C-C, Tang D, Warnken KW, Santschi PH (2001) Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar Chem 73:305–318

    Article  CAS  Google Scholar 

  • Jenner M, Smithson A (1989) Physicochemical properties of the sweetener sucralose. J Food Sci 54:1646–1649

    Article  CAS  Google Scholar 

  • Jiang JQ (2007) Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater 146:617–623

    Article  CAS  Google Scholar 

  • Jiang JQ, Zhou Z (2013) Removal of pharmaceutical residues by ferrate(VI). PLoS ONE 8:e55729

    Article  CAS  Google Scholar 

  • Jiang JQ, Yin Q, Zhou JL, Pearce P (2005) Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere 61:544–550

    Article  CAS  Google Scholar 

  • Jiang JQ, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 63:212–219

    Article  CAS  Google Scholar 

  • Jiang JQ, Stanford C, Alsheyab M (2009) The online generation and application of ferrate(VI) for sewage treatment-a pilot scale trial. Sep Purif Technol 68:227–231

    Article  CAS  Google Scholar 

  • Jiang JQ, Zhou Z, Pahl O (2012) Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI). Sep Purif Technol 88:95–98

    Article  CAS  Google Scholar 

  • Jiang JQ, Zhou Z, Patibandla S, Shu X (2013) Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchem J 110:239–245

    Article  CAS  Google Scholar 

  • Kee OS, Linden KG (2013) Re-engineering an artificial sweeteners: transforming sucralose residuals in water via advanced oxidation. Environ Sci Technol 47:6799–6805

    Google Scholar 

  • Kimmel WK, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensor and biosensors. Anal Chem 84:685–707

    Article  CAS  Google Scholar 

  • Kokotou MG, Asimakopoulos AG, Thomaidis NS (2012) Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal Methods 4:3057–3070

    Article  CAS  Google Scholar 

  • Labare MP, Alexander M (1994) Microbial cometabolism of sucralose, a chlorinated disaccharide, in environmental samples. Appl Microbiol Biotechnol 42:173–178

    Article  CAS  Google Scholar 

  • Lange FT, Scheurer M, Brauch H-J (2012) Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem 403:2503–2518

    Article  CAS  Google Scholar 

  • Lapin-Scott HM, Holt G, Bull AT (1987) Microbial transformation of 1,6-dichloro-1,6-didideoxy-β, d-fructofuranosyl-4-chloro-4-deoxy-α, d-galactopyranoside (TGS) by soil populations. J Appl Microbiol 3:95–102

    Google Scholar 

  • Lee Y, von Gunten U (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res 44:555–566

    Article  CAS  Google Scholar 

  • Lee Y, Escher BI, von Gunten U (2008) Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ Sci Technol 42:6333–6339

    Article  CAS  Google Scholar 

  • Lee Y, Zimmermann SG, Kieu AT, von Gunten U (2009) Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ Sci Technol 43:3831–3838

    Article  CAS  Google Scholar 

  • Lillicrap A, Langford K, Tollefsen KE (2011) Bioconcentration of the intense sweetener sucralose in a multitrophic battery of aquatic organisms. Environ Toxicol Chem 30:673–681

    Article  CAS  Google Scholar 

  • Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method. J Chromatogr A 1216:1126–1131

    Article  CAS  Google Scholar 

  • Mawhinney DB, Young RB, Vanderford BJ, Borch T, Snyder SA (2011) Artificial sweetener sucralose in U.S. drinking water systems. Environ Sci Technol 45:8716–8722

    Article  CAS  Google Scholar 

  • Mead RN, Morgan JB, Avery GB Jr, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009) Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Mar Chem 116:13–17

    Article  CAS  Google Scholar 

  • Minten J, Adolfsson-Erici M, Björlenius B, Alsberg T (2011) A method for the analysis of sucralose with electrospray LC/MS in recipient waters and in sewage effluent subjected to tertiary treatment technologies. Int J Environ Anal Chem 91:357–366

    Article  CAS  Google Scholar 

  • Myers RL (2007) The 100 most important chemical compounds: a reference guide. Greenwood Publishing Group, Westport

    Google Scholar 

  • NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.0 (Web Version), Release1.6.7 Data Version 03.2013

  • Navalon S, Alvaro M, Garcia H (2008) Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl− and Br− on trihalomethane formation potential. Water Res 42:3990–4000

    Article  CAS  Google Scholar 

  • Neset TSS, Singer H, Longrée P, Bader H-P, Scheidegger R, Wittmer A, Andersson JCM (2010) Understanding consumption-related sucralose emissions—a conceptual approach combining substance-flow analysis with sampling analysis. Sci Total Environ 408:3261–3269

    Article  Google Scholar 

  • Parpot P, Nunes N, Bettencourt AP (2006) Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: structure-reactivity relationship. J Electroanal Chem 596:65–73

    Article  CAS  Google Scholar 

  • Parpot P, Servat K, Bettencourt AP, Huser H, Kokoh KB (2010) TEMPO mediated oxidation of carbohydrates using electrochemical methods. Cellulose 17:815–824

    Article  CAS  Google Scholar 

  • Prucek R, Tuček, Kolařík J, Filip J, Marušák Z, Sharma VK, Zbořil R (2013) Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47:3283–3292

    CAS  Google Scholar 

  • Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4616–4648

    Article  Google Scholar 

  • Robers A, Renwick AG, Sims J, Snodin DJ (2000) The metabolic fate of sucralose in rats. Food Chem Toxicol 38(Suppl 2):S31–S41

    Article  Google Scholar 

  • Scheurer M, Brauch H-J, Lange FT (2009) Analysis and occurrence of seven sweeteners in German wastewater and surface water and in soil treatment (SAT). Anal Bioanal Chem 394:1585–1594

    Article  CAS  Google Scholar 

  • Scheurer M, Storck R, Brauch H-J, Lange FT (2010) Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners. Water Res 44:3573–3584

    Article  CAS  Google Scholar 

  • Sharma VK (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord Chem Rev 257:495–510

    Article  CAS  Google Scholar 

  • Sharma VK, Li XZ, Graham N, Doong RA (2008) Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. J Water Supply Res Technol AQUA 57:419–426

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M, Anquandah GAK, Nesnas N (2012) Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere 87:644–648

    Article  CAS  Google Scholar 

  • Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA (2013) Oxidation of β-lactam antibiotics by ferrate(VI). Chem Eng J 221:446–451

    Article  CAS  Google Scholar 

  • Sigleo AC (1996) Biochemical components in suspended particles and colloids: carbohydrates in the Potomac and Patuxent estuaries. Org Geochem 24:83–93

    Article  CAS  Google Scholar 

  • Soh L, Connors KA, Brooks BW, Zimmerman J (2011) Fate of sucralose through environmental and water treatment processes and impact on plant indicator species. Environ Sci Technol 45:1363–1369

    Article  CAS  Google Scholar 

  • Stenman D, Carlsson M, Jonsson M, Reitberger T (2003) Reactivity of the carbonate radical anion towards carbohydrate and lignin model compounds. J Wood Chem Technol 23:47–69

    Article  CAS  Google Scholar 

  • Tollefsen KE, Nizzetto L, Huggett DB (2012) Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci Total Environ 438:510–516

    Article  CAS  Google Scholar 

  • Torres CI, Ramakrishna S, Chiu C-A, Nelson KG, Westerhoff P, Krajmalnik-Brown R (2011) Fate of sucralose during wastewater treatment. Environ Eng Sci 28:325–331

    Article  CAS  Google Scholar 

  • Toth JE, Rickman KA, Venter AR, Kiddle JJ, Mezyk SP (2012) Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water. J Phys Chem A 116:9819–9824

    Article  CAS  Google Scholar 

  • Viberg H, Fredriksson A (2011) Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior. Nutrition 27:81–85

    Article  CAS  Google Scholar 

  • Wiklund AKE, Breitholtz M, Bengtsson B-E, Adolfsson-Erici M (2012) Sucralose—an ecotoxicological challenger? Chemosphere 86:50–55

    Article  CAS  Google Scholar 

  • Yamazaki S, Fujiwara N, Takeda S, Yasuda (2010) Electrochemical oxidation of sugars at moderate potentials catalyzed by Rh porphyrins. Chem Commun 46:3607–3609

    Article  CAS  Google Scholar 

Download references

Acknowledgment

V.K. Sharma thanks the United States National Science Foundation for ferrate research (CBET 1236331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Oturan, M. & Kim, H. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. Environ Sci Pollut Res 21, 8525–8533 (2014). https://doi.org/10.1007/s11356-014-2786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2786-y

Keywords

Navigation