Skip to main content

Advertisement

Log in

Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An outdoor pot experiment was designed to study the changes of growth parameters, accumulation, and distribution of Cd in poplar (Populus nigra L.) during a prolonged exposure period (growing period of 17 months including three harvest points), allowing the consideration of time effects and prolonged adaptation to Cd stress. Simultaneously, changes to the antioxidant system in roots and leaves were monitored. It was demonstrated that poplar could adapt to the Cd-contaminated soils after prolonged exposure. Total Cd accumulation in the aerial parts of poplar, due to high biomass production and acceptable Cd accumulation parameters, implies that the tested poplar species could be a good candidate for Cd phytoextraction application as well as could be used as phytostabilizer of Cd in heavily polluted soil. Furthermore, the activity of the antioxidant machinery displays both a tissue- and exposure-specific response pattern to different Cd treatments, indicating that strict regulation of the antioxidant defense system is required for the adaptive response of poplar. In addition, this report highlights the importance of prolonged exposure studies of physiological responses of plants, especially for long-life-cycle woody species under heavy metal stress, since some misleading conclusions could be reached after shorter time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements—review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126. doi:10.3923/jest.2011.118.138

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34. doi:10.1590/S1677-04202005000100003

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, pp 764–775

    Google Scholar 

  • Dai HP, Shan CJ, Jia GL, Yang TX, Wei AZ, Zhao H, Wu SQ, Huo KK, Chen WQ, Cao XY (2013) Responses to cadmium tolerance, accumulation and translocation in Populus × canescens. Water Air Soil Poll 224:1504. doi:10.1007/s11270-013-1504-6

    Article  Google Scholar 

  • Domínguez MT, Marańón T, Murillo JM, Redondo-Gómez S (2011) Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Chemosphere 83:1166–1174. doi:10.1016/j.chemosphere.2011.01.002

    Article  Google Scholar 

  • Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421. doi:10.1093/jxb/err384

    Article  CAS  Google Scholar 

  • Esterbauer H, Grill D (1978) Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol 61:119–121. doi:10.1104/pp. 61.1.119

    Article  CAS  Google Scholar 

  • Fuksová Z, Száková J, Tlustoš P (2009) Effects of co-cropping on bioaccumulation of trace elements in Thlaspi caerulescens and Salix dasyclados. Plant Soil Environ 55:461–467

    Google Scholar 

  • Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, Mugnozza GS, Sabatti M (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol 31:1309–1318. doi:10.1093/treephys/tpr088

    Article  CAS  Google Scholar 

  • Ge W, Jiao JQ, Sun BL, Qin R, Jiang WS, Liu DH (2012) Cadmium-mediated oxidative stress and ultrastructural changes in root cells of poplar cultivars. S Afr J Bot 83:98–108. doi:10.1016/j.sajb.2012.07.026

    Article  CAS  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22–30. doi:10.1186/1745-6673-1-22

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB (1974) The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 71:3879–3882. doi:10.1073/pnas.71.10.3879

    Article  CAS  Google Scholar 

  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res Int 20:163–174. doi:10.1007/s11356-012-1008-8

    Article  CAS  Google Scholar 

  • He J, Qin J, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 145:50–63. doi:10.1111/j.1399-3054.2011.01487

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I—Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37. doi:10.1155/2012/872875

    Article  Google Scholar 

  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638. doi:10.1093/treephys/tps032

    Article  CAS  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396. doi:10.1016/j.jprot.2009.01.014

    Article  CAS  Google Scholar 

  • Komárek M, Tlustoš P, Száková J, Chrastný V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38. doi:10.1016/j.envpol.2007.03.010

    Article  Google Scholar 

  • Lanza de Sáe Melo Marques TCL, Soares AM (2011) Antioxidant system of ginseng under stress by cadmium. Scientia Agricola Sci Agric 68:482–488. doi:10.1590/S0103-90162011000400014

    Article  Google Scholar 

  • Li JT, Baker AJ, Ye ZH, Wang HB, Shu WS (2012) Phytoextraction of Cd-contaminated soils. Crit Rev Environ Sci Technol 42:2113–2152

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180. doi:10.1007/s10725-007-9188-9

    Article  CAS  Google Scholar 

  • Li S, Xue L, Xu S, Feng H, An L (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71. doi:10.1016/j.envexpbot.2008.06.004

    Article  CAS  Google Scholar 

  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J. Hazard Mater 169:170–175. doi:10.1016/j.jhazmat.2009.03.090

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. doi:10.1093/jxb/erq281

    Article  CAS  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22. doi:10.1016/j.plaphy.2012.05.002

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguebel JP, Schmulling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48. doi:10.1016/j.envexpbot.2011.10.005

    Article  CAS  Google Scholar 

  • Nikolić N, Kojić D, Pilipović A, Pajević S, Krstić B, Borišev M, Orlović S (2008) Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation and antioxidant enzyme activity. Acta Biol Cracov Bot 80:95–103

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediat 12:105–120. doi:10.1080/15226510902767163

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474. doi:10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi:10.1016/S0378-4274(02)00381-8

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Shanker Dubey R, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10.1155/2012/217037

    Article  Google Scholar 

  • Siedlecka A, Krupa Z (2002) Functions of enzymes in heavy metal treated plants. In: Prasad MNV, Kazimierz S (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic, Dordrecht, pp 314–3177

    Google Scholar 

  • Singh S, Eapen S, D'Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere 62:233–246. doi:10.1016/j.chemosphere.2005.05.017

    Article  CAS  Google Scholar 

  • Słomka A, Libik-Konieczny M, Kuta E, Miszalski Z (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. J Plant Physiol 165:1610–1619. doi:10.1016/j.jplph.2007.11.004

    Article  Google Scholar 

  • Toogood A (1999) Propagating plants. Dorling Kindersley, London

    Google Scholar 

  • UNECE (2010a) Sampling and analysis of needles and leaves. ICP Forests Manual Part IV, pp 18.

  • UNECE (2010b) Sampling and analysis of soil. ICP Forests Manual Part X, pp 208.

  • Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Rep 27:1261–1269. doi:10.1007/s00299-008-0552-7

    Article  CAS  Google Scholar 

  • Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49:542–547

    Google Scholar 

  • Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149. doi:10.1007/s11104-008-9641-1

    Article  CAS  Google Scholar 

  • Wu F, Yang W, Zhang J, Zhou L (2010) Cadmium accumulation and growth responses of a poplar (Populus deltoides × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177:268–273. doi:10.1016/j.jhazmat.2009.12.028

    Article  CAS  Google Scholar 

  • Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W (2012) Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. J Integr Plant Biol 54:991–1006. doi:10.1111/j.1744-7909.2012.01170.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Croatian Forest Research Institute team; Ivica Čehulić, the nursery manager, and his staff as well as analysts Renata Tubikanec and Monika Hlebić for the assistance in the field and the laboratory experiment. Support from the Ministry of Science, Education and Sports, Republic of Croatia (Grant No. 0582261-2256) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Radojčić Redovniković.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakovljević, T., Bubalo, M.C., Orlović, S. et al. Adaptive response of poplar (Populus nigra L.) after prolonged Cd exposure period. Environ Sci Pollut Res 21, 3792–3802 (2014). https://doi.org/10.1007/s11356-013-2292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2292-7

Keywords

Navigation