Skip to main content

Advertisement

Log in

Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine

  • 14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36–53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the “nano” and “organic” characteristics of polymer-based nanopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addiscott TM (1977) Simple computer model for leaching in structured soils. J Soil Sci 28(4):554–563

    Article  CAS  Google Scholar 

  • Beulke S, Brown CD (2006) Impact of correlation between pesticide parameters on estimates of environmental exposure. Pest Manag Sci 62(7):603–609. doi:10.1002/ps.1198

    Article  CAS  Google Scholar 

  • Beulke S, van Beinum W (2012) Guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments. http://www.pesticides.gov.uk/Resources/CRD/Migrated-Resources/Documents/E/EnvFate_Aged_sorption_guidance_final_30_07_2012.pdf. Accessed Sept 2013

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343. doi:10.1007/s10646-008-0213-1

    Article  CAS  Google Scholar 

  • DEFRA (2010) Development of guidance on the implementation of aged soil sorption studies into regulatory exposure assessments. Research report for DEFRA project PS2235. The Food and Environment Research Agency and Alterra

  • Eisler R (2007) Atrazine. Eisler's encyclopedia of environmentally hazardous priority chemicals. Elsevier, Amsterdam

  • Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC-Trends Anal Chem 29(1):84–100. doi:10.1016/j.trac.2009.09.005

    Article  CAS  Google Scholar 

  • FOCUS (2006) Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC document reference Sanco/ 10058/2005, version 2.0. FOCUS, Brussels, Belgium

  • Ford SC, Price OR, Terry AS (2007) Transport of pesticides to water from slow release formulations: application of current pesticide fate models. In: Del Re AAM, Capri E, Fragoulis G, Trevisan M (eds) Environmental fate and ecological effects of pesticides. La Goliarica Pavese, Pavia, IT

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi:10.1021/jf302154y

    Article  CAS  Google Scholar 

  • Grillo R, AdE SP, Silva de Melo NF, Porto RM, Feitosa LO, Tonello PS, Dias Filho NL, Rosa AH, Lima R, Fraceto LF (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186(2–3):1645–1651. doi:10.1016/j.jhazmat.2010.12.044

    Article  CAS  Google Scholar 

  • Grillo R, Pereira dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9. doi:10.1016/j.jhazmat.2012.06.019

    Article  Google Scholar 

  • Harper SS (1994) Sorption-desorption and herbicide behavior in soil. Rev Weed Sci 6:207–225

    CAS  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Ware GW (ed) Reviews of environmental contamination and toxicology, vol 188. Springer, New York, pp 149–217. doi:10.1007/978-0-387-32964-2_5

    Chapter  Google Scholar 

  • Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68(7):1335–1343. doi:10.1016/j.chemosphere.2007.01.024

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235. doi:10.1016/j.envint.2013.11.015

    Google Scholar 

  • Kah M, Beulke S, Brown CD (2007) Factors influencing degradation of pesticides in soil. J Agric Food Chem 55(11):4487–4492. doi:10.1021/jf0635356

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867. doi:10.1080/10643389.2012.671750

    Article  CAS  Google Scholar 

  • Liu J, Legros S, Von der Kammer F, Hofmann T (2013) Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol 47(9):4113–4120. doi:10.1021/es302447g

    Article  CAS  Google Scholar 

  • Martinazzo R, Jablonowski ND, Hamacher G, Dick DP, Burauel P (2010) Accelerated degradation of C-14-atrazine in Brazilian soils from different regions. J Agric Food Chem 58(13):7864–7870. doi:10.1021/jf100549d

    Article  CAS  Google Scholar 

  • Mudhoo A, Garg VK (2011) Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere 21(1):11–25. doi:10.1016/s1002-0160(10)60074-4

    Article  CAS  Google Scholar 

  • OECD (2000) Guidelines for the testing of chemicals test no. 106: adsorption-desorption using a batch equilibrium method. Organisation for Economic Co-Operation and Development, Paris, France

  • OECD (2002) Guidelines for the testing of chemicals test no. 307: aerobic and anaerobic transformation in soils. Organisation for Economic Co-operation and Development, Paris, France

  • Ottofuelling S, Von der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ Sci Technol 45(23):10045–10052. doi:10.1021/es2023225

    Article  CAS  Google Scholar 

  • Pathak RK, Dikshit AK (2012) Atrazine and its use. Int J Res Chem Environ 2(1):1–6

    CAS  Google Scholar 

  • Qing S, Yongli S, Yuehong Z, Ting Z, Haoyan S (2013) Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym Adv Technol 24(2):137–143. doi:10.1002/pat.3060

    Article  Google Scholar 

  • Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, Berlin

    Google Scholar 

  • Shaner D, Brunk G, Nissen S, Westra P, Chen WL (2012) Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water. J Environ Qual 41(1):170–178. doi:10.2134/jeq2011.0187

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2013) http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm. Accessed Sep 2013

  • University of Hertfordshire (2013) The Pesticide Properties DataBase developed by the Agriculture & Environment Research Unit, University of Hertfordshire, 2006–2013. http://sitem.herts.ac.uk/aeru/footprint/en/index.htm. Accessed Sep 2013

  • Viswanath NR, Patil RB, Rangaswami G (1977) Dehydrogenase activity and microbial population in a red sandy soil amended and unamended with incubation. Zentralblatt fuer Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene Zweite Naturwissenschaftliche Abteilung Allgemeine Landwirtschaftliche und Technische Mikrobiologie 132 (4):335-339

  • Walker A (2000) A simple centrifugation technique for the extraction of soil solution to permit direct measurement of aqueous phase concentrations of pesticide. In: Cornejo J, Jamet P (eds) Pesticide soil interactions-some current research, methods. pp 173–178

  • Walker A, Jurado-Exposito M (1998) Adsorption of isoproturon, diuron and metsulfuron-methyl in two soils at high soil : solution ratios. Weed Res 38(3):229–238

    Article  CAS  Google Scholar 

  • Walker A, Rodriguez-Cruz MS, Mitchell MJ (2005) Influence of ageing of residues on the availability of herbicides for leaching. Environ Pollut 133(1):43–51. doi:10.1016/j.envpol.2004.04.012

    Article  CAS  Google Scholar 

  • Yazgan MS, Wilkins RM, Sykas C, Hoque E (2005) Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere 60(9):1325–1331. doi:10.1016/j.chemosphere.2005.01.075

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Weaver MA, Locke MA (2006) Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Sci 54(3):538–547. doi:10.1614/ws-04-179r3.1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Renato Grillo and Leonardo Fernandes Fraceto would like to thank Grant #2009/00294-9 and #2011/01872-6, São Paulo Research Foundation (FAPESP), CNPq and Fundunesp.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melanie Kah or Thilo Hofmann.

Additional information

Responsible editor: Laura McConnell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kah, M., Machinski, P., Koerner, P. et al. Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res 21, 11699–11707 (2014). https://doi.org/10.1007/s11356-014-2523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2523-6

Keywords

Navigation