Skip to main content
Log in

Arsenic removal from water employing a combined system: photooxidation and adsorption

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A combined system employing photochemical oxidation (UV/H2O2) and adsorption for arsenic removal from water was designed and evaluated. In this work, a bench-scale photochemical annular reactor was developed being connected alternately to a pair of adsorption columns filled with titanium dioxide (TiO2) and granular ferric hydroxide (GFH). The experiences were performed by varying the relation of As concentration (As (III)/As (V) weight ratio) at constant hydrogen peroxide concentration and incident radiation. Experimental oxidation results were compared with theoretical predictions using an intrinsic kinetic model previously obtained. In addition, the effectiveness of the process was evaluated using a groundwater sample. The mathematical model of the entire system was developed. It could be used as an effective tool for the design and prediction of the behaviour of these types of systems. The combined technology is efficient and promising for arsenic removal to small and medium scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A t :

Cross-section area, cm2

C i :

Concentration of the species, mol cm−3

e a P, λ :

Local volumetric rate of photon absorption (LVRPA), Einstein cm−3 s−1

E λ P,o :

Spectral fluence rate, Einstein cm−2 s−1

E λ P,o,W :

Spectral fluence rate at the inner wall, Einstein cm−2 s−1

EBRT:

Empty bed residence time, s

K 27 :

Kinetic parameter

L R :

Reactor length, cm

L L :

Lamp length, cm

Q :

Flow rate, cm3 s−1

Q r :

Recirculation flow rate, cm3 s−1

Q R :

Reactor flow rate, cm3 s−1

R :

Reaction rate, mol cm−3 s−1

r :

Weight concentration ratio; also radial coordinate, cm

r L :

Lamp radius, cm

r i :

Inner radius, cm

r o :

Outer radius, cm

r r :

Recycle ratio

s :

Lineal coordinate in Ω direction, cm

t :

Time, s

X i :

Conversion, %

Y w :

Medium value of the transmittance for the reactor wall

z :

Axial coordinate, cm

Z :

Column height, cm

α λ,P :

Spectral linear naperian absorption coefficient of the hydrogen peroxide, cm−1

K p,λ :

Molar naperian absorption coefficient, cm2 mol−1

λ :

Wavelength, nm

υ z :

Axial fluid velocity inside the reactor, cm s−1

θ :

Spherical coordinate, rad

Φ p :

Primary quantum yield

φ :

Spherical coordinate, rad

\( \underset{\bar{\mkern6mu}}{\varOmega } \) :

Unit vector in the direction of radiation propagation

Ψ :

Geometric factor

〈  〉:

Averaged value over a defined space

References

  • Allen A, Hochanadel C, Ghormley J (1952) Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation. J Phys Chem 56:575–586

    Article  Google Scholar 

  • Armienta M, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  CAS  Google Scholar 

  • AWWA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Waters Works Association, USA

    Google Scholar 

  • Balarama Krishna M, Chandrasekharan K, Karunasagar D, Arunachalam J (2001) A combined treatment approach using Fentons reagent and zero valent iron for the removal of arsenic from drinking water. J Hazard Mater B84:229–240

    Article  Google Scholar 

  • Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60:389–397

    Article  CAS  Google Scholar 

  • Bhattacharjeea P, Chatterjeea D, Singhb K, Giri A (2013) Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 216:574–586

    Article  Google Scholar 

  • Bissen M, Vieillard-Baron M, Schindelin A, Frimmel F (2001) TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44:751–757

    Article  CAS  Google Scholar 

  • Boonstra A, Mutsaers C (1975) Adsorption of hydrogen peroxide on the surface of titanium dioxide. J Phys Chem 79(18):1940–1943

    Article  CAS  Google Scholar 

  • Bundschuh J, Litter M, Parvez F, Román-Ross G, Nicolli B, Jean JS, Liu CW, López D, Armienta M, Guilherme L, Gomez Cuevas A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Article  CAS  Google Scholar 

  • Celik I, Gallicchio L, Boyd K, Lam T, Matanoski G, Tao X, Shiels M, Hammond E, Chen L, Robinson K, Caulfield L, Herman J, Guallar E, Alberg A (2008) Arsenic in drinking water and lung cancer: a systematic review. Environ Res 108:48–55

    Article  CAS  Google Scholar 

  • Dodd M, Vu N, Ammann A, Le V, Kissner R, Pham H, Cao T, Berg M, Von Gunten MU (2006) Kinetics and mechanistic aspects of As (III) oxidation by aqueous chlorine, chloramines and ozone: relevance to drinking water treatment. Environ Sci Technol 40:3285–3292

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1994) Methods for the determination of metals in environmental samples. Supplement I-EPA/600/R-94-111. Method 200.9, revision 2.2.—Determination of trace metals by stabilized temperature graphite furnace atomic absorption. Cincinnati, Ohio, USA

  • Frank D, Clifford D (1986) Arsenic (III) oxidation and removal from drinking water. U. S. Environmental Protection Agency EPA-600-52/86/021, pp 2–86

  • Glaze W, Lay Y, Kang J (1995) Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind Eng Chem Res 34:2314–2323

    Article  CAS  Google Scholar 

  • Gonçalves JE, Filho UPR, Franco DW, Gushikem Y (2007) Adsorption of hydrogen peroxide on the surface of silica–titania mixed oxide obtained by the sol-gel processing method. Eclet Quim 32(2):41–45

    Article  Google Scholar 

  • Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215–216:1–16

    Article  Google Scholar 

  • He J, Charlet L (2013) A review of arsenic presence in China drinking water. J Hydrol 492:79–88

    Article  CAS  Google Scholar 

  • Henke K (2009) Arsenic. Environmental chemistry, health, threats and waste treatment. University of Kentucky Center for Applied Energy Research. John Wiley, USA

    Google Scholar 

  • Hong-Jie S, Bala R, Bing W, Jun L, Li-Ping P, Lena M (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158

    Article  Google Scholar 

  • Kim M, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79

    Article  CAS  Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931

    Article  CAS  Google Scholar 

  • Kubota L, Gushikem Y, Mansanares A, Vargas H (1995) Sorption of hydrogen peroxide by titanium (IV) oxide grafted on silica gel surface. J Colloid Interface Sci 173:372–375

    Article  CAS  Google Scholar 

  • Labas M, Brandi R, Zalazar C, Cassano A (2009) Water disinfection with UVC radiation and H2O2. A comparative study. Photochem Photobiol Sci 8:670–676

    Article  CAS  Google Scholar 

  • Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanism. Environ Sci Technol 36:3872–3878

    Article  CAS  Google Scholar 

  • Lee G, Song K, Bae J (2011) Permanganate oxidation of arsenic (III). Reaction stoichiometry and the characterization of the solid product. Geochim Cosmochim Acta 75:4713–4727

    Article  CAS  Google Scholar 

  • Lescano M (2013) Doctoral thesis “Study of advanced processes for the oxidation and removal of arsenic from water. Application of UV H2O2 system”. Faculty of Chemical Engineering (FIQ) National University of Litoral (UNL) (in Spanish)

  • Lescano M, Zalazar C, Cassano A, Brandi R (2011) Arsenic (III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10:1797–1803

    Article  CAS  Google Scholar 

  • Lescano M, Zalazar C, Cassano A, Brandi R (2012) Kinetic modelling of arsenic (III) oxidation in water employing the UV/H2O2 process. Chem Eng J 211–212:360–368

    Article  Google Scholar 

  • Litter M, Morgada M, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118

    Article  CAS  Google Scholar 

  • Ma L, Tu S (2011) Removal of arsenic from aqueous solution by two types of nano TiO2 crystals. Environ Chem Lett 9(4):465–472

    Article  CAS  Google Scholar 

  • Manna B, Dey S, Debnath S, Ghosh U (2003) Removal of arsenic from ground-water using crystalline hydrous ferric oxide (CHFO). Water Qual Res J Can 38:193–210

    CAS  Google Scholar 

  • Mohan D, Pittman C Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mondal P, Bhowmick S, Chatterjee D, Figoli A, Van der Bruggen B (2013) Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 92:157–170

    Article  CAS  Google Scholar 

  • Muhlebach J, Muller K, Schwarzenbach G (1970) The peroxo complexes of titanium. Inorg Chem 9(11):2381–2390

    Article  Google Scholar 

  • Murov S, Carmichael I, Hug G (1993) Handbook of photochemistry. 2nd ed. Marcel Dekker, New York

  • Nakajima T, Xu Y, Mori Y, Kishita M, Takanashi H, Maeda S, Ohki A (2005) Combined use of photocatalyst and adsorbent for the removal of inorganic arsenic (III) and organoarsenic compounds from aqueous media. J Hazard Mater B120:75–80

    Article  Google Scholar 

  • Nguyen T, Vigneswaran S, Ngo H, Kandasamy J, Choi H (2008) Arsenic removal by photo-catalysis hybrid system. Sep Purif Technol 61:44–50

    Article  CAS  Google Scholar 

  • Ouvrard S, Simonnot M, de Donato P, Sardin M (2002a) Diffusion controlled adsorption of arsenate on natural manganese oxide. Ind Eng Chem Res 41:6194–6199

    Article  CAS  Google Scholar 

  • Ouvrard S, Simonnot M, Sardin M (2002b) Reactive behavior of natural manganese oxides towards the adsorption of phosphate and arsenate. Ind Eng Chem Res 41:2785–2791

    Article  CAS  Google Scholar 

  • Pettine M, Campanella L, Millero F (1999) Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 63:2727–2735

    Article  CAS  Google Scholar 

  • Rahman S, Kim K-H, Kumar Saha S, Swaraz A, Kumar Paul, D (2014) Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. J Environ Manag 134:175–185

  • Sharma A, Tjell J, Sloth J, Holm P (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 4:11–33

    Article  Google Scholar 

  • Sorlini S, Gialdini F, Stefan M (2010) Arsenic oxidation by UV radiation combined with hydrogen peroxide. Water Sci Technol 61:339–344

    Article  CAS  Google Scholar 

  • Sorlini S, Gialdini F, Stefan M (2014) UV/H2O2 oxidation of arsenic and terbuthylazine in drinking water. Envion Monit Assess 186(2):1311–1316

    Article  CAS  Google Scholar 

  • Tresintsia S, Simeonidisb K, Katsikinic M, Palourac E, Bantsisa G, Mitrakasa M (2014) A novel approach for arsenic adsorbents regeneration using MgO. J Hazard Mater 265:217–225

    Article  Google Scholar 

  • UNESCO (United Nations Educational, Scientific, and Cultural Organization) (2006) Bottled water, weekly newsletter of the water portal number 152 http://www.unesco.org/water/news/newsletter/153_es.shtml (in Spanish)

  • Vasudevan S, Mohan S, Sozhan G, Raghavendran N, Murugan C (2006) Studies on the oxidation of As (III) to As (V) by in-situ-generated hypochlorite. Ind Eng Chem Res 45:7729–7732

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2011) Guidelines for drinking-water quality. 4th ed. WHO Press, Switzerland

  • Yamamuchi H, Fowler B (1994) Toxicity and metabolism of inorganic and methylated arsenicals. In: Nriagu JO (ed) Arsenic in the environment part II. Human health and ecosystem effects. Wiley, New York, pp 35–53

    Google Scholar 

  • Yoon S, Lee J (2007) Combined use of photochemical reaction and activated alumina for the oxidation and removal of As (III). J Ind Eng Chem 13(1):97–104

    CAS  Google Scholar 

  • Yunus M, Sohel N, Kumar Hore S, Rahman M (2011) Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J Med Sci 27:371–376

    Article  CAS  Google Scholar 

  • Zhang F, Itoh H (2006) Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere 65:125–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support. They also thank Ing. Susana Gervasio for her valuable help in several steps of the analytical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Brandi.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lescano, M., Zalazar, C. & Brandi, R. Arsenic removal from water employing a combined system: photooxidation and adsorption. Environ Sci Pollut Res 22, 3865–3875 (2015). https://doi.org/10.1007/s11356-014-3280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3280-2

Keywords

Navigation