Skip to main content
Log in

Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0 ± 10.0 mg g−1 of As(V) and 142.9 ± 7.2 mg g−1 of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Addo NS, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159

    Article  Google Scholar 

  • Akbari A, Sheshdeh FJ, Jabbari V (2012) Novel nanofibreous membrane fabricated via electrospinning of wastage fuzzes of mechanized carpet used for dye removal of the carpet dyeing wastewater. J Environ Sci Health A 47:847–853

    Article  CAS  Google Scholar 

  • Allabaksh MB, Mandal BK, Kesarla MK, Kumar KS, Reddy PS (2010) Preparation of stable zerovalent iron nanoparticles using different chelating agents. J Chem Pharm Res 2:67–74

    CAS  Google Scholar 

  • Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19

    Article  CAS  Google Scholar 

  • Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membrane 1:232–248

    Article  Google Scholar 

  • Bang S, Patel M, Lippincott L, Meng X (2005a) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60:389–397

    Article  CAS  Google Scholar 

  • Bang S, Johnson MD, Korfiatis GP, Meng X (2005b) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770

    Article  CAS  Google Scholar 

  • Bjorge D, Daels N, Vrieze SD, Dejans P, Camp TV, Audenaert W, Hogie J, Westbroek P, Clerck KD, Hulle SWH (2009) Performance assessment of electrospun nanofibres for filter applications. Desalination 249:942–948

    Article  CAS  Google Scholar 

  • Calo JM, Madhavan L, Kirchner J, Bain EJ (2012) Arsenic removal via ZVI in a hybrid spouted vessel/fixed bed filter system. Chem Eng J 189–190:237–243

    Article  Google Scholar 

  • Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologia 470:63–96

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  • Chen W, Parette R, Zou J, Cannon FS, Dempsey BA (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  Google Scholar 

  • Desai K, Kit K, Li JJ, Davidson PM, Zivanovic S, Meyer H (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669

    Article  CAS  Google Scholar 

  • Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). J Biomater Sci Polym Edn 15:797–811

    Article  CAS  Google Scholar 

  • Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022

    Article  CAS  Google Scholar 

  • Geng B, Jin Z, Li T, Qi X (2009) Preparation of chitosan-stabilized Fe° nano particles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000

    Article  CAS  Google Scholar 

  • Guan Z, Liu L, He L, Yang S (2011) Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water. J Hazard Mater 196:270–277

    Article  CAS  Google Scholar 

  • Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870

    Article  CAS  Google Scholar 

  • Gupta A, Yunus M, Sankararamakrishnan N (2012) Zerovalent iron encapsulated chitosan nanospheres—a novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere 86:150–155

    Article  CAS  Google Scholar 

  • Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibres and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96

    Article  CAS  Google Scholar 

  • Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  • Horzum N, Demir MM, Nairatc M, Shahwan T (2013) Chitosan fibre-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3:7828–7837

    Article  CAS  Google Scholar 

  • Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibres produced by electrospinning method. Carbohyd Polym 67:403–409

    Article  CAS  Google Scholar 

  • Jiang H, Fang D, Hsiao B, Chu B, Chen W (2004) Preparation and characterization of ibuprofen-loaded poly (lactide-co-glycolide)/poly (ethylene glycol)-g-chitosan electrospun membranes. J Biomater Sci Polym Ed 15:279–296

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide coated polymeric materials. Water Res 36:5141–5155

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Ruettimann T, Hug SJ (2008) pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ Sci Technol 42:7424–7430

    Article  CAS  Google Scholar 

  • Kumar PR, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55:1245–1252

    Article  Google Scholar 

  • Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127

    Article  CAS  Google Scholar 

  • Lala NL, Ramaseshan R, Li B, Sundarrajan S, Barhate RS, Liu YJ, Ramakrishna S (2007) Fabrication of nanofibres with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 97:1357–1365

    Article  CAS  Google Scholar 

  • Li D, Xia YN (2004) Electrospinning of nanofibres: reinventing the wheel? Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  • Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun Chitosan nanofibre mats and application in lead ions removal from aqueous solutions. Eur Polym J 49:1487–1494

    Article  CAS  Google Scholar 

  • Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G (2012) Adsorption of As (III) and As (V) from water using magnetite fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chem Eng J 187:45–52

    Article  CAS  Google Scholar 

  • Mahanta N, Valiyaveettil S (2013) Functionalized poly(vinyl alcohol) based nanofibres for the removal of arsenic from water. RSC Adv 3:2776–2783

    Article  CAS  Google Scholar 

  • Man KC (2009) Removal of arsenic from water using chitosan and nano chitosan, Ph.D. Thesis, Hon ong University of Science and Technology

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nano crystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75

    Article  CAS  Google Scholar 

  • Miao Y-E, Wang R, Chen D, Liu Z, Liu T (2012) Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH(Boehmite) core/sheath fibres for water remediation. ACS Appl Mater Interfaces 4:5353–5359

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Pajany YM, Galgani F, Roméo M, Hurel C, Marmier N (2010) Minerals as additives for decreasing the toxicity of Mediterranean contaminated dredged sediments. Ecotoxicol Environ Safe 73:1748–1754

    Article  Google Scholar 

  • Rahman N, Sato N, Yoshioka S, Sugiyama M, Okabe H, Hara K (2013) Selective Cu(II) adsorption from aqueous solutions including Cu(II), Co(II), and Ni(II) by modified acrylic acid grafted PET film. ISRN Polym Sci 2013:1–9

    Article  Google Scholar 

  • Safiullah S (2006) Arsenic pollution in the ground water in Bangladesh: an overview. Asian J Water Environ Pollut 4:47–59

    Google Scholar 

  • Safiullah S, Khannal DP, Tareq SM and Khan MMK (1999) Arsenic mobilization in ground water: analysis and leaching experiment on aquifer soils of Bangladesh and Nepal. In: V. Ittekot, V. Subramanian, S. Annadurai (eds.). Biogeochemistry of rivers in tropical south and southeast Asia, Hamburg University, Germany, UNEP/SCOPE Sonderband- Helf, 82, 125-130

  • Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environ Sci Technol 35:4562–4568

    Article  CAS  Google Scholar 

  • Takeno N (2005) Atlas of Eh-pH diagrams, Geological Survey of Japan Open File Report, 419:102

  • Tang C, Saquing CD, Harding JR, Khan SA (2010) In situ cross-linking of electrospun poly(vinyl alcohol) nanofibres. Macromolecules 43:630–637

    Article  CAS  Google Scholar 

  • Velickovic Z, Vukovic GD, Marinkovic AD, Moldovan M, Peric-Grujic AA, Uskokovic PS, Ristic MT (2012) Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181–182:174–181

    Article  Google Scholar 

  • Wagman DD, Evans HH, Parker VB, Schumm RH, Harlow I, Bailey SM, Churney KL, Butall RLJ (1982) The NBS tables of chemical thermodynamic properties—selected values for inorganic and C-1 and C-2 organic-substances in SI units. J Phys Chem Ref Data 11:392

    Google Scholar 

  • Xiao S, Shen M, Guo R, Wang S, Shi X (2009) Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J Phys Chem C 113:18062–18068

    Article  CAS  Google Scholar 

  • Yang JM, Chiu HC (2012) Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J Membrane Sci 419–420:65–71

    Article  Google Scholar 

  • Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly (vinyl alcohol ) mats. Eur Polym J 41:423–432

    Article  CAS  Google Scholar 

  • Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/Poly (vinyl alcohol) membranes. Colloid Polym Sci 285:855–863

    Article  CAS  Google Scholar 

  • Zheng QZ, Wang P, Yang YN, Cui DJ (2006) The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J Membr Sci 286:7–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini Sankararamakrishnan.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D., Dwivedi, J. & Sankararamakrishnan, N. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res 21, 9430–9442 (2014). https://doi.org/10.1007/s11356-014-2864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2864-1

Keywords

Navigation