Skip to main content
Log in

Spontaneous vegetation succession at different central European mining sites: a comparison across seres

  • Mining and the Environment - Understanding Processes, Assessing Impacts and Developing Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson KJ (2007) Temporal patterns in rates of community change during succession. Am Nat 169:780–793

    Article  Google Scholar 

  • Beneš J, Kepka P, Konvička M (2003) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248

    Google Scholar 

  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–122

    Article  Google Scholar 

  • Glenn-Lewin DC, Peet RK, Veblen TT (1992) Plant succession. Theory and prediction. Chapman and Hall, London

    Google Scholar 

  • Hodačová D, Prach K (2003) Spoil heaps from brown coal mining: technical reclamation vs. spontaneous re-vegetation. Restor Ecol 11:385–391

    Article  Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analysis. Belhaven Press, London

    Google Scholar 

  • Konvalinková P, Prach K (2010) Spontaneous succession of vegetation in mined peatlands: a multi-site study. Preslia 82:423–435

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Luken JO (1990) Directing ecological succession. Chapman and Hall, London

    Google Scholar 

  • Mudrák O, Frouz J, Velichová V (2010) Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol Eng 36:783–790

    Article  Google Scholar 

  • Neuhäuslová Z (2001) Map of potential natural vegetation of the Czech Republic. Academia, Praha

    Google Scholar 

  • Novák J, Prach K (2003) Vegetation succession in basalt quarries: pattern over a landscape scale. Appl Veg Sci 6:111–116

    Google Scholar 

  • Novák J, Konvička M (2006) Proximity of valuable habitats affects succession patterns in abandoned quarries. Ecol Eng 26:113–122

    Article  Google Scholar 

  • Peet RK (1978) Forest vegetation of the Colorado Front Range: patterns of species diversity. Vegetatio 37:65–78

    Article  Google Scholar 

  • Perrow MR, Davy AJ (eds) (2002) Handbook of ecological restoration. Cambridge University Press, Cambridge

    Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens G E (ed), Long-term studies in ecology: approaches and alternatives. p. 110–135, Springer

  • Prach K (1987) Succession of vegetation on dumps from strip coal mining, N. W. Bohemia, Czechoslovakia. Folia Geobot Phytotax 22:339–354

    Google Scholar 

  • Prach K (1988) Life-cycles of plants in relation to temporal variation of populations and communities. Preslia 60:23–40

    Google Scholar 

  • Prach K (2003) Spontaneous vegetation succession in central European man-made habitats: what information can be used in restoration practice? Appl Veg Sci 6:125–129

    Google Scholar 

  • Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16:363–366

    Article  Google Scholar 

  • Prach K, Řehounková K (2006) Vegetation succession over broad geographical scales: which factors determine the patterns? Preslia 78:469–480

    Google Scholar 

  • Prach K, Pyšek P, Šmilauer P (1999) Prediction of vegetation succession in human-disturbed habitats using an expert system. Restor Ecol 7:15–23

    Article  Google Scholar 

  • Prach K, Pyšek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: a pattern across seres. Appl Veg Sci 4:83–88

    Article  Google Scholar 

  • Prach K, Pyšek P, Jarošík V (2007) Climate and pH as a determinants of vegetation succession in central European man-made habitats. J Veg Sci 18:701–710

    Article  Google Scholar 

  • Prach K, Řehounková K, Řehounek J, Konvalinková P (2011) Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landsc Res 36:263–268

    Article  Google Scholar 

  • Prévosto B, Kuiters L, Bernhardt-Römerman M, Dölle M, Schmidt W, Hoffman M, Van Uytvanck J, Bohner A, Kreiner D, Stadler J, Klotz S, Brandl R (2011) Impacts of land abandonment on vegetation: successional pathways in European habitats. Folia Geobot 46:303–325

    Article  Google Scholar 

  • Procházka F (ed) (2001) Black and red lists of vascular plants in the Czech Republic. Příroda (18):1–166

  • Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasionpatterns. Preslia 84:155–256

    Google Scholar 

  • Řehounková K, Prach K (2006) Spontaneous vegetation succession in disused gravel-sand pits: role of local site and landscape factors. J Veg Sci 17:583–590

    Article  Google Scholar 

  • Řehounková K, Prach K (2008) Spontaneous vegetation succession in gravel-sand pits: a potential for restoration. Restor Ecol 16:305–312

    Article  Google Scholar 

  • Řehounková K, Prach K (2010) Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel-sand pits. Basic Appl Ecol 11:45–53

    Article  Google Scholar 

  • Řehounková K, Řehounek J, Prach K (eds) (2011) Near-natural restoration vs. technical reclamation of mining sites in the Czech Republic. Faculty of Science USB, České Budějovice. 211 p

  • Sádlo J, Chytrý M, Pyšek P (2007) Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–322

    Google Scholar 

  • Stewart GB, Cox ES, LeDuc MG, Pakerman RJ, Pullin AS, Marrs RH (2008) Control of Pteridium aquilinum: meta-analysis of a multi-site study in the UK. Ann Bot 101:957–970

    Article  Google Scholar 

  • Štýs S, Braniš M (1999) Czech school of land reclamation. Acta Univ Carol Environ 13:99–109

    Google Scholar 

  • ter Braak CJ, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user´s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power. Ithaca, USA

    Google Scholar 

  • Tischew S, Kirmer A (2007) Implementation of basic studies in the ecological restoration of surface-mined land. Restor Ecol 15:321–325

    Article  Google Scholar 

  • Trnková R, Řehounková K, Prach K (2010) Spontaneous succession of vegetation on acidic bedrock in quarries in the Czech Republic. Preslia 82:333–343

    Google Scholar 

  • Tropek R, Kadlec T, Karešová P, Spitzer L, Kočárek P, Malenovský I, Baňař P, Tuf IH, Hejda M, Konvička M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147

    Article  Google Scholar 

  • van Andel J, Aronson J (eds) (2012) Restoration ecology. The new frontier, 2nd Ed. Wiley-Blackwell, Oxford

  • Vojar J (2006) Colonization of post-mining landscapes by amphibians: a review. Sci Agric Bohem 37:35–40

    Google Scholar 

  • Walker LR (1999) Ecosystems of disturbed land. Elsevier, New York

    Google Scholar 

  • Walker LR, del Moral R (eds) (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker LR, Walker J, Hobbs RJ (eds) (2007) Linking restoration and ecological succession. Springer, New York

    Google Scholar 

  • Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the following grants: GAČR P505/11/0256, RVO 67985939 and GAJU 138/2010/P. The authors thank Jan Lepš and Petr Šmilauer for helping us with multivariate statistics and Fred Rooks for doing a language revision of our manuscript and other comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Prach.

Additional information

Responsible editor: Philippe Garrigues

Appendix

Appendix

List of full species names used in Fig. 1b: Agrostis canina L., Achillea millefolium L., Agrostis capillaris L., Alnus glutinosa (L.) Gaertn., Arenaria serpyllifolia L., Arrhenatherum elatius (L.) J.Presl et C. Presl, Artemisia vulgaris L., Avenella flexuosa (L.) Drejer, Betula sp., Bromus erectus Huds., Calamagrostis epigejos (L.) Roth, Calluna vulgaris (L.) Hull, Cirsium arvense (L.) Scop., Convolvulus arvensis L., Cornus sanguinea L., Crataegus sp. div., Dactylis glomerata L., Daucus carota L., Deschampsia cespitosa (L.) P.B., Epilobium angustifolium L., Eriophorum vaginatum L.,Festuca ovina L., Festuca rupicola Heuffel, Fragaria vesca L., Fraxinus excelsior L., Geranium robertianum L., Hypericum perforatum L., Juncus effusus L., Medicago lupulina L., Molinia caerulea (L.) Moench, Picea abies (L.) H. Karst., Pinus sylvestris L., Poa angustifolia L., Poa compressa L., Poa nemoralis L., Poa palustris subsp. palustris, Populus tremula L., Prunus avium (L.) L., Prunus spinosa L., Quercus sp., Robinia pseudacacia L., Rosa sp., Rubus sp., Rubus idaeus L., Salix caprea L., Salix cinerea L., Sambucus nigra L., Sanguisorba minor Scop., Sedum album L., Sorbus aucuparia L., Tanacetum vulgare L., Tripleurospermum inodorum (L.) Sch. Bip., Tussilago farfara L., Urtica dioica L., Vaccinium myrtillus L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prach, K., Lencová, K., Řehounková, K. et al. Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ Sci Pollut Res 20, 7680–7685 (2013). https://doi.org/10.1007/s11356-013-1563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1563-7

Keywords

Navigation