Skip to main content
Log in

Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95 % IR) and S. obliquus (about 90 % IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC–LR in the algal cell culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Boylan JD, Morris JE (2003) Limited effects of barley straw on algae and zooplankton in a Midwestern pond. Lake Reserv Manage 19:265–271

    Article  Google Scholar 

  • Chen JQ, Guo RX (2012) Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae. J Hazar Mater 209:520–523

    Article  Google Scholar 

  • Chorus I (2001) Cyanotoxins: Occurrence, Causes, Consequences. In: Ingrid C. (ed) Heidelberg, Springer, p 357

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharm 203:264–272

    Article  CAS  Google Scholar 

  • Daly RI, Ho L, Brookes JD (2007) Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ Sci Technol 41:4447–4453

    Article  CAS  Google Scholar 

  • de Figueiredo DR, Azeiteiro UM, Esteves SM (2004) Microcystin-producing blooms-a serious global public health issue. Ecotox and Environ Safety 59:151–163

    Article  Google Scholar 

  • Downing TG, Sember CS, Gehringer MM, Leukes W (2005) Medium N:P ratios and specific growth rate comodulate microcystin and protein content in Microcystis aeruginosa PCC7806 and M. aeruginosa UV027. Microb Ecol 49:1–6

    Article  Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural community. Mar Ecol Prog Ser 255:115–125

    Article  Google Scholar 

  • Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138

    Article  CAS  Google Scholar 

  • Hilt S (2006) Allelopathic inhibition of epiphytes by submerged macrophytes. Aqua Bot 85:252–256

    Article  Google Scholar 

  • Hong Y, Hu HY, Xie X, Li FM (2008) Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis). J Plant Physiol 165:1264–1273

    Article  CAS  Google Scholar 

  • ISO 8692 (2004)Water Quality – Fresh Water Algal Growth Inhibition Test With Scenedesmus subspicatus and Selenastrum capricornutum, Geneva, Switzerland

  • Jang MH, Ha K, Joo GJ, Takamura N (2003) Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol 48:1540–1550

    Article  Google Scholar 

  • Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876

    Article  CAS  Google Scholar 

  • Ke Z, Xie P, Guo L (2008) Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China). Hydrobiologia 607:41–49

    Article  CAS  Google Scholar 

  • Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  CAS  Google Scholar 

  • Kong C, Wang P, Zhang C, Zhang M, Hu F (2006) Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Res 46:290–295

    Article  CAS  Google Scholar 

  • Men YJ, Hu HY (2007) Effects of allelochemical EMA from reed on the production and release of cyanotoxins in Microcystis aeruginosa. Environment Science 28:2058–2062 (in Chinese)

    CAS  Google Scholar 

  • Mulderij G, Mau B, van Donk E, Gross EM (2007) Allelopathic activity of Stratiotes aloides on phytoplankton—towards identification of allelopathic substances. Hydrobiologia 584:89–100

    Article  CAS  Google Scholar 

  • Nakai S, Inoue Y, Hosomi M, Murakami A (2000) Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Wat Res 34:3026–3032

    Article  CAS  Google Scholar 

  • Ni LX, Acharya K, Hao XY, Li SY (2012) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88:1051–1057

    Article  CAS  Google Scholar 

  • Ni LX, Acharya K, Ren GX, Li SY, Li YP, Li Y (2013) Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae. Chemosphere 91:608–615

    Article  CAS  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Robillot C, Vinh J, Puiseux-Dao S, Hennion MC (2000) Hepatotoxin production kinetics of the cyanobacterium Microcystis aeruginosa PCC 7820, as determined by HPLC-mass spectrometry and protein phosphatase bioassay. Environ Sci Technol 34:3372–3378

    Article  CAS  Google Scholar 

  • Sager L (2009) Measuring the trophic status of ponds: relationships between summer rate of periphytic net primary productivity and water physico–chemistry. Water Res 43:1667–1679

    Article  CAS  Google Scholar 

  • Song LR, Lei LM, He ZR, Liu YD (1999) Growth and toxin analysis in two toxic cyanobacteria Microcystis aeruginosa and Microcystis viridis isolated from Dianchi Lake. Acta Hydrobiol Sin 23:402–408

    Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park H, Chen GC, Chen G, Yu SS (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321

    Article  CAS  Google Scholar 

  • Umehara A, Tsutsumi H, Takahashi T (2012) Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan). Environ Sci Pollut Res 19:3257–3267

    Article  Google Scholar 

  • Vanormelingen P, Vyverman W, De Bock D, Van der Gucht K, De Meester L (2009) Local genetic adaptation to grazing pressure of the green alga Desmodesmus armatus in a strongly connected pond system. Limnol Oceanogr 54:503–511

    Article  Google Scholar 

  • Wang J, Zhu JY, Liu SP, Liu BY, Gao YN, Wu ZB (2011) Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes. Chemosphere 85:977–982

    Article  CAS  Google Scholar 

  • Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the microcystin content of Microcystis Strain PCC7806. Appl Enviro Microb 69:1475–1481

    Article  CAS  Google Scholar 

  • Wu C, Chang XX, Dong HJ, Li DF, Liu JY (2008) Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. On Microcystis aeruginosa and its physiological mechanism. Acta Ecol Sin 28:2595–2603

    Article  CAS  Google Scholar 

  • Wu X, Wu H, Chen JR, Ye JY (2013) Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environ Sci Pollut Res 20:8192–8201

    Article  CAS  Google Scholar 

  • Xian QM, Chen HD, Liu HL, Zou HX, Yin DQ (2006) Isolation and identification of antialgal compounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation. Environ Sci Pollut Res 13:233–237

    Article  CAS  Google Scholar 

  • Xiao X, Chen YX, Liang XQ, Lou LP, Tang XJ (2010) Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters. Chemosphere 81:1118–1123

    Article  CAS  Google Scholar 

  • Yamamoto Y, Nakahara H (2005) Competitive dominance of the cyanobacterium Microcystis aeruginosa in nutrient-rich culture conditions with special reference to dissolved inorganic carbon uptake. Phycol Res 53:201–208

    Article  Google Scholar 

  • Zhang TT, He M, Wu AP, Nie LW (2009) Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopathy J 23:391–401

    CAS  Google Scholar 

  • Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98:196–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported jointly by the National Natural Science Foundation (Grant No. 51109061, 41373111, 51009049); the National Science Funds for Distinguished Young Scholars (Grant No. 51225901); the Research Fund for innovation team of Ministry of education (Grant No. IRT13061); the Jiangsu Water Resources Science and Technology Program (Grant No. 201371); and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixiao Ni.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Li, D., Hu, S. et al. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release. Environ Sci Pollut Res 22, 18637–18644 (2015). https://doi.org/10.1007/s11356-015-5438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5438-y

Keywords

Navigation