Skip to main content
Log in

Polar narcosis: Designing a suitable training set for QSAR studies

  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Substituted phenols, anilines, pyridines and mononitrobenzenes can be classified as polar narcotics. These chemicals differ from non-polar narcotic compounds not only in their toxic potency (normalized by log Kow), but also in their Fish Acute Toxicity Syndrome profiles, together suggesting a different mode of action.

For 97 polar narcotics, which are not ionized under physiological conditions, 11 physico-chemical and quantum-chemical descriptors were calculated. Using principal component analysis, 91 % of the total variance in this descriptor space could be explained by three principal components which were subsequently used as factors in a statistical design. Eleven compounds were selected based on a two-level full factorial design including three compounds near the center of the chemical domain (a 23+3 design).

QSARs were developed for both the design set and the whole set of 63 polar narcotics for which guppy and/or fathead minnow data were available in the literature. Both QSARs, based on partial least squares regression (3 latent variables), resulted in good models (R2=0.96 and Q2=0.82; R2=0.86 and Q2=0.83 respectively) and provided similar pseudo-regression coefficients. In addition, the model based on the design chemicals was able to predict the toxicity of the 63 compounds (R2 =0.85).

Models show that acute fish toxicity is determined by hydrophobicity, HOMO-LUMO energy gap and hydrogen-bond acceptor capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. M. Hermens in:Hutzinger, O. (Ed.): Handbook of Environmental Chemistry. Vol. 2E, Springer Verlag, Berlin 1989, pp. 111–162

    Google Scholar 

  2. J. L. M. Hermens in:Karcher, W. andDevillers, J. (Eds.): Practical Applications of QSAR in Environmental Chemistry and Toxicology. Kluwer Academic Publishers, Dordrecht 1990, pp. 263–280

    Google Scholar 

  3. M. Sjöström;L. Eriksson, in van de Waterbeemd, H. (Ed.): Methods and principles in medicinal chemistry. Vol. 2 (Chemometric Methods in Molecular Design), Verlag Chemie, Weinheim 1995, pp. 63–40

    Google Scholar 

  4. L. Eriksson;J. Jonsson;S. Hellberg;F. Lindgren;B. SkagerBerg;M. Sjostrom;S. Wold;R. Berglind: Environ. Toxicol. Chem. 9, 1339–1351 (1990)

    Article  CAS  Google Scholar 

  5. S. Wold;M. Sjöström;R. Carlson;T. Lundstedt;S. Hellberg;B. Skagerberg;C. Wikström;J. Öhman: Anal. Chim. Acta 191, 17–32 (1986)

    Article  CAS  Google Scholar 

  6. H. J. M. Verhaar;C. J. van Leeuwen;J. L. M. Hermens: Chemosphere 25 (4), 471–491 (1992)

    Article  CAS  Google Scholar 

  7. C. J. van Leeuwen;P. T. J. van der Zandt;T. Aldenberg;H. J. M. Verhaar;J. L. M. Hermens: Environ. Toxicol. Chem. 11, 267–282 (1992)

    Article  Google Scholar 

  8. H. J. M. Verhaar;C. J. van Leeuwen;J. Bol;J. L. M. Hermens: SAR & QSAR Environ. Res. 2, 39–58 (1994)

    Article  CAS  Google Scholar 

  9. S. P. Bradbury;T. R. Henry;G. J. Niemi: Environ. Toxicol. Chem. 8, 247–261 (1989)

    Article  CAS  Google Scholar 

  10. G. D. Veith;S. J. BroderiuS: Environ. Health Persp. 87, 207–211 (1990)

    Article  CAS  Google Scholar 

  11. H. J. M. Verhaar;E. Urrestarazu Ramos;J. L. M. Hermens: J. Chemometr. 10, 149–162 (1996)

    Article  CAS  Google Scholar 

  12. G. D. Veith;S. J. Broderius in:Kaiser, K. L. E. (Ed.): QSAR in Environmental Toxicology- II, D. Reidel Publishing Company, Dordrecht 1986, pp. 385–391

    Google Scholar 

  13. T. W. Schultz;G. W. Holcombe;G. L. Phipps: Ecotoxicol. Environ. Safety 12, 146–153 (1986)

    Article  CAS  Google Scholar 

  14. D. W. Roberts in:Kaiser, K.L.E. (Ed.): QSAR in Environmental Toxicology - II, D. Reidel Publishing Company, Dordrecht 1986, pp. 295–308

    Google Scholar 

  15. L. H. Hall;L. B. Kier: Bull. Environ. Contam. Toxicol. 32, 354–362 (1984)

    Article  CAS  Google Scholar 

  16. J. Saarikoski;M. Viluksela: Ecotoxicol. Environ. Safety 6, 501–512 (1982)

    Article  CAS  Google Scholar 

  17. J. L. M. Hermens;P. Leeuwangh, A. Musch: Ecotoxicol. Environ. Safety 8, 388–394 (1984)

    Article  CAS  Google Scholar 

  18. V. K. Gombar in:Kaiser, K.L.E. (Ed.): QSAR in Environmental Toxicology - II, D. Reidel Publishing Company, Dordrecht 1986, pp. 125–133

    Google Scholar 

  19. H. Könemann;A. Musch: Toxicology 19, 223–228 (1981)

    Article  Google Scholar 

  20. G. Bringmann;R. Z. Kühn: Wasser-Abwasser-Forsch. 10(5), 161–166(1977)

    CAS  Google Scholar 

  21. G. A. Leblanc: Bull. Environ. Contam. Toxicol. 24(5), 684–691 (1980)

    Article  CAS  Google Scholar 

  22. R. Kühn;M. Pattard;K. Pernak;A. Winter: Water Res. 23(4), 501–510 (1989)

    Article  Google Scholar 

  23. W.Beirat der Bundesärztekammer: Deutsches Ärzteblatt 86(49), C2239–2241 (1989)

    Google Scholar 

  24. R. Kühn et. al.: Forschungsbericht 10603052, Mrz (1988)

  25. R. Kühn;M. Pattard;K. Pernak;A. Winter: Water Res. 23(4), 495–499 (1989)

    Article  Google Scholar 

  26. J. Bol; H. J. M. Verhaar;. C. J. van Leeuwen; J. L. M. Hermens: Predictions of the Aquatic Toxicity of High-Production-Volume-Chemicals Part B: Predictions, Published by the Dutch Ministry of Housing, Spatial Planning and Environment (1993)

  27. D. Leo;D. Weininger: MedChem Software Manual v Software, Day-Light Chemical Information Systems, Inc., Irvine CA, USA, (1989)

    Google Scholar 

  28. US-EPA ERL-Duluth, Assessment Tools for the Evaluation of Risk (ASTER) v 1994: Software. US-EPA Environmental Research Laboratory-Duluth Scientific Outreach Program, Duluth MN, USA (1994)

  29. W. J. Hehre;L.D. Burke;A. J. Shusterman: Spartan User’s Guide, Wavefunction, Inc., Irvine CA, USA, (1993)

    Google Scholar 

  30. S. Wold;K. Esbensen;P. Geladi: Chemometr. Intel. Lab. Systems 2, 37–52 (1987)

    Article  CAS  Google Scholar 

  31. S. Wold: Technometrics 20(4), 397–405 (1978)

    Article  Google Scholar 

  32. H. T. Eastment;W. J. Krzanowski: Technometrics 24(1), 73–77 (1982).

    Article  Google Scholar 

  33. B. M. Wise: PLS-Toolbox Version 1.3, Barry M. Wise, 1415 Wright Avenue, Richland WA, USA; bm_wise@pnl.gov; obtained by anonymous FTP from ra.nrl.navy.mil:MacSciTech/chem/ chemometrics, February 1993, (1993)

    Google Scholar 

  34. C. Moler;J. Little;S. Kleinman;S. Bangert: Matlab, Version 3.5, the MathWorks, Inc., Natick, MA (1992)

    Google Scholar 

  35. P. Geladi;R. Kowalski: Anal. Chim. Acta 185, 1–17 (1986)

    Article  CAS  Google Scholar 

  36. S. Wold, in: van de Waterbeemd, (Ed.): Methods and principles in medicinal chemistry. Vol. 2 (Chemometric Methods in Molecular Design), Verlag Chemie, Weinheim 1995, pp. 195–218

    Google Scholar 

  37. D. L. Massart;B. G. M. Vandeginste;S. N. Deming;Y. Michotte;L. Kaufman: in (Ed.)Vandeginste, B.G.M. andKaufman, L. (Eds.): Data handling in science and technology. Vol. 2 (Chemometrics: a textbook), Elsevier, Amsterdam 1988, pp. 47–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eñaut Urrestarazu Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, E.U., Vaes, W.H.J., Verhaar, H.J.M. et al. Polar narcosis: Designing a suitable training set for QSAR studies. Environ. Sci. & Pollut. Res. 4, 83–90 (1997). https://doi.org/10.1007/BF02986285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986285

Keywords

Navigation