Skip to main content
Log in

Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes

  • Research and Education Highlights
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–69

    CAS  Google Scholar 

  • Arends K, Schiwon K, Sakinc T, Hübner J, Grohmann E (2012) Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between gram-positive and gram-negative bacteria. Appl Environ Microbiol 78(3):895–9

    Article  CAS  Google Scholar 

  • Basly B, Popa G, Fleutot S, Pichon BP, Garofalo A, Ghobril C, Begin-Colin S (2013) Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents. Dalton Trans 42(6):2146–57

    Article  CAS  Google Scholar 

  • Commissariat Général au developpement durable (2013) Basol: un panorama des sites et sols pollués, ou potentiellement pollués, nécessitant une action des pouvoirs publics

  • Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39(5):3607–3612

    Article  Google Scholar 

  • Dumas-Bouchiat F, Zanini LF, Kustov M, Dempsey NM, Grechishkin R, Hasselbach K, Givord D (2010) Thermomagnetically patterned micromagnets. Appl Phys Lett 96(10):102511

    Article  Google Scholar 

  • Eyers L, George I, Schuler L, Stenuit B, Agathos SN, El Fantroussi S (2004) Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 66(2):123–30

    Article  CAS  Google Scholar 

  • Furlani EP (2002) Particle transport in magnetophoretic microsystems. In Microfluidic devices in nanotechnology 3461–3473

  • Ghobril C, Popa G, Parat A, Billotey C, Taleb J, Bonazza P, Felder-Flesch D (2013) A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and Hepatobiliary elimination. Chem Commun 49(80):9158–60

    Article  CAS  Google Scholar 

  • Ikuma K, Gunsch CK (2012) Genetic bioaugmentation as an effective method for in situ bioremediation functionality. Bioengineered 3(4):236–241

    Article  Google Scholar 

  • Kumar A, Bisht B, Joshi V, Dhewa T (2011) Review on bioremediation of polluted environment : a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kustov M, Laczkowski P, Hykel D, Hasselbach K, Dumas-Bouchiat F, O’Brien D, Dempsey N (2010) Magnetic characterization of micropatterned Nd–Fe–B hard magnetic films using scanning hall probe microscopy. J Appl Phys 108(6):063914

    Article  Google Scholar 

  • Lee KY, Bosch J, Meckenstock RU (2012) Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health 34(1):135–142

    Article  CAS  Google Scholar 

  • Lyon DY, Pivetal J, Blanchard L, Vogel TM (2010) Bioremediation via in situ electrotransformation. Bioremediat J 14(2):109–119

    Article  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman E a (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  Google Scholar 

  • Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Focardi SE (2011) Mercury-resistant bacterial strains pseudomonas and psychrobacter spp. Isolated from sediments of orbetello lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65(1):85–91

    Article  CAS  Google Scholar 

  • Pivetal J, Osman O, Vezy C, Frénéa-robin M, Haddour N (2010) Trapping of magnetically-labelled liposomes on flat micro-patterned hard magnetic films. In 8TH International conference on the scientific and clinical applications of magnetic carriers 192–197

  • Pivetal J, Ciuta G, Frenea-Robin M, Haddour N, Dempsey NM, Dumas-Bouchiat F, Simonet P (2014a) Magnetic nanoparticle DNA labeling for individual bacterial cell detection and recovery. J Microbiol Methods 107:84–91

    Article  CAS  Google Scholar 

  • Pivetal J, Royet D, Ciuta G, Frenea-Robin M, Haddour N, Dempsey NM, Simonet P (2014b) Micro-magnet arrays for specific single bacterial cell positioning. J Magn Magn Mater 380:72–77

    Article  Google Scholar 

  • Pivetal J, Toru S, Frenea-Robin M, Haddour N, Cecillon S, Dempsey NM, Simonet P (2014c) Selective isolation of bacterial cells within a microfluidic device using magnetic probe-based cell fishing. Sensors Actuators B Chem 195:581–589

    Article  CAS  Google Scholar 

  • Ray JL, Nielsen KM (2005) Experimental methods for assaying natural transformation and inferring horizontal gene transfer. Methods Enzymol 395:491–520

    Article  CAS  Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Die Naturwissenschaften 93(2):51–65

    Article  CAS  Google Scholar 

  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3(9):700–10

    Article  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–22

    Article  CAS  Google Scholar 

  • Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243(1–2):191–210

    Article  CAS  Google Scholar 

  • Vézy C, Haddour N, Dempsey NM, Dumas-Bouchiat F, Frénéa-Robin M (2011) Simple method for reversible bonding of a polydimethylsiloxane microchannel to a variety of substrates. Micro Nano Lett 6(10):871

    Article  Google Scholar 

  • Vogel TM (1994) Natural bioremediation of chlorinated compounds. In: Norris RD, Kerr RS (eds) Handbook of bioremediation. CRC Press Inc, Boca Raton

    Google Scholar 

  • Walter A, Billotey C, Garofalo A, Ulhaq-Bouillet C, Lefèvre C, Taleb J, Begin-Colin S (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26(18):5252–5264

    Article  CAS  Google Scholar 

  • Walter A, Garofalo A, Parat A, Jouhannaud J, Pourroy G, Voirin E, Felder-Flesch D (2015) Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. J Mater Chem B 3(8):1484–1494

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81(3):229–249

    Article  CAS  Google Scholar 

  • Zanini LF, Dempsey NM, Givord D, Reyne G, Dumas-Bouchiat F (2011) Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl Phys Lett 99(23):232504

    Article  Google Scholar 

  • Zanini LF, Osman O, Frenea-Robin M, Haddour N, Dempsey NM, Reyne G, Dumas-Bouchiat F (2012) Micromagnet structures for magnetic positioning and alignment. J Appl Phys 111(7):07B312

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Région Rhône-Alpes for the financial support provided including the PhD grant of J. Pivetal. This work also benefited from the financial support of the French National Research Agency (ANR 09-CESA-013), the CNRS, and Cemagref interdisciplinary Ecological engineering program 2009 (“Nanogénomique” project) which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pivetal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivetal, J., Frénéa-Robin, M., Haddour, N. et al. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes. Environ Sci Pollut Res 22, 20322–20327 (2015). https://doi.org/10.1007/s11356-015-5614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5614-0

Keywords

Navigation