Skip to main content
Log in

Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3 % (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BC:

Biochar

WC:

Woodchip-derived biochar

WS:

Wheat straw-derived biochar

VP400:

Vineyard pruning-derived biochar (pyrolysis temperature 400 °C)

VP525:

Vineyard pruning-derived biochar (pyrolysis temperature 525 °C)

TE:

Trace element

EC:

Electrical conductivity

CEC:

Cation exchange capacity

SSA:

Specific surface area

EBC:

European Biochar Certificate

References

  • Acosta J, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 58:1318–1324

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, New York

    Book  Google Scholar 

  • Agrawal J, Sherameti I, Varma A (2011) Detoxification of heavy metals: state of art. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Heidelberg, pp 1–34

    Chapter  Google Scholar 

  • Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177:16–25

    Article  Google Scholar 

  • Alloway B (1995) Heavy metals in soils. Blackie Academic and Professional, London

    Book  Google Scholar 

  • Alloway B (2013a) Heavy metals and metalloids as micronutrients for plants and animals. In: Alloway B (ed) Heavy metals in soils—trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 195–210

    Chapter  Google Scholar 

  • Alloway B (2013b) Introduction. In: Alloway B (ed) Heavy metals in soils—trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 3–9

    Chapter  Google Scholar 

  • Bagreev A, Bandosz T, Locke D (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage-derived fertiliser. Carbon 39:1971–1979

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles E, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restauration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore waterbut reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454–455:598–603

    Article  Google Scholar 

  • Bolan N, Adriano D, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:216–272

    Google Scholar 

  • Bridle TR, Pritchard D (2004) Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci Tech 50:169–175

    CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier, Oxford, pp 191–248

    Chapter  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

  • Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238

    Article  CAS  Google Scholar 

  • Chan K, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Science and Technology. Earthscan, Sterling, pp 67–84

    Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated Paddy soil: a two-year field experiment. BioResources 6:2605–2618

    CAS  Google Scholar 

  • Dai Z, Meng J, Muhammad N, Liu X, Wang H, He Y, Brookes PC, Xu J (2013) The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J Soils Sed 13:989–1000

    Article  Google Scholar 

  • Dordas C, Apostolides GE, Goundra O (2007) Boron application affects seed yield and seed quality of sugar beets. J Agric Sci 145:377–384

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, Sterling, pp 13–32

    Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  CAS  Google Scholar 

  • Farrell M, Rangott G, Krull E (2013) Difficulties in using soil-based methods to assess plant availability of potentially toxic elements in biochars and their feedstocks. J Hazard Mater 250–251:29–36

    Article  Google Scholar 

  • Goldberg S (1997) Reactions of boron with soils. Plant Soil 193:35–48

    Article  CAS  Google Scholar 

  • Gupta O, Gupta S (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Comm Soil Sci Plant Anal 29:1491–1522

    Article  CAS  Google Scholar 

  • Hossain M, Strezov V, Chan K, Nelson P (2010) Agronomic properties of wastewater sludge biochar on bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013a) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013b) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457

    Article  CAS  Google Scholar 

  • International Biochar Initiative (2013) Standardized product definition and product testing guidelines for biochar that is used in soil. Document Reference Code IBI-STD-01.1

  • Jiang J, Xu R (2013) Application of crop straw derived biochars to Cu(II) contaminated Ultisol: evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresour Technol 133:537–545

    Article  CAS  Google Scholar 

  • Jones DL, Quilliam RS (2014) Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J Hazard Mater 276:362–370

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp N, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake of ryegrass. J Hazard Mater 191:41–48

    Article  CAS  Google Scholar 

  • Khanmirzaei A (2012) Fate of cadmium in calcareous soils under salinity conditions. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Berlin, pp 261–272

    Google Scholar 

  • Kim W-K, Shim T, Kim Y-S, Hyun S, Ryu C, Park Y-K, Young J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effect of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Wimmer B, Buecker J, Rempt F, Soja G (2014a) Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci 177:3–15

    Article  Google Scholar 

  • Kloss S, Zehetner F, Oburger E, Kitzler B, Wenzel WW, Wimmer B, Soja G (2014b) Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Sci Total Environ 481:498–508

    Article  CAS  Google Scholar 

  • Kuhlbusch T, Crutzen P (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cy 9:491–501

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management—science and technology. Earthscan, Sterling, pp 1–12

    Google Scholar 

  • Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sed 13:1561–1572

    Article  CAS  Google Scholar 

  • Li M, Liu Q, Guo L, Zhang Y, Lou Z, Wang Y, Qian G (2013) Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresour Technol 141:83–88

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qi R (2013) Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrol 102:7–143

    Article  Google Scholar 

  • Lua A, Yang T, Guo J (2004) Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J Anal Appl Pyrol 72:279–287

    Article  CAS  Google Scholar 

  • Lucchini P, Quilliam RS, DeLuca TH, Vamerali T, Jones DL (2014) Does biochar application alter heavy metal dynamics in agricultural soil). Agr Ecosyst Environ 184:149–157

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha S, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359

    Article  Google Scholar 

  • Meng J, Wang L, Liu X, Wu J, Brookes P, Xu J (2013) Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour Technol 142:641–646

    Article  CAS  Google Scholar 

  • Namgay T, Singh B, Singh B (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb and Zn to maize (Zea mays L.). Aust J Soil Res 48:638–647

    Article  CAS  Google Scholar 

  • ONorm L 1085 (2009) Chemische Bodenuntersuchungen- Extraktion von Elementen mit Königswasser oder Salpeter- Perchlor Gemisch. Vienna, Austria: Österreichisches Normierungsinstitut

  • ÖNorm L 1094 (1999) Chemische Bodenuntersuchungen- Extraktion von Spurenelementen mit Ammoniumnitratlösung. Vienna, Austria: Österreichisches Normierungsinstitut

  • Oleszczuk P, Josko I, Kusmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382

    Article  CAS  Google Scholar 

  • O'Toole A, Knoth de Zarruk K, Steffens M, Rasse D (2013) Characterization, stability and plant effects of kiln-produced wheat straw biochar. J Environ Qual 42:429–436

    Article  Google Scholar 

  • Oves M, Khan M, Zaidi A, Ahmad E (2012) Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. In: Zaidi A, Wani P, Khan M (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 1–27

    Chapter  Google Scholar 

  • Park JH, Choppala G, Bolan N, Chung J, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Qian T, Zhang X, Hu J, Jian H (2013) Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere 93:2069–2075

    Article  CAS  Google Scholar 

  • Revell KT, Maguire RO, Agblevor FA (2012) Field trials with poultry litter biochar and its effect on forages, green peppers and soil properties. Soil Sci 177:573–579

    Article  CAS  Google Scholar 

  • Robson A, Reuter D (1981) Diagnosis of copper deficiency and toxicity. In: Loneragan J, Robson A, Graham R (eds) Copper in soils and plants. Academic Press, New York, pp 287–312

    Google Scholar 

  • Rondon M, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:283–305

    Google Scholar 

  • Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115

    Article  CAS  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  • Santos F, Torn M, Bird J (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    Article  CAS  Google Scholar 

  • Schmidt H, Abiven S, Glaser B, Kammann C, Bucheli T, Leifeld J (2012) European Biochar Certificate. Biochar Science Network of Switzerland

  • Singh B, Singh B, Cowie A (2010) Characterisation and evaluation of biochars for their application as soil amendment. Aust J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science Rep. 05/09, Clayton, Australia

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659

    Article  CAS  Google Scholar 

  • Thiel H, Finck A (1973) Ermittlung von Grenzwerten optimaler Kupferversorgung für Hafer und Sommergerste. J Plant Nutr Soil Sci 134:107–125

    CAS  Google Scholar 

  • Uchimiya M, Lima I, Klasson K, Chang S, Wartelle L, Rodgers J (2010) Immobilization of heavy metal Ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544

    Article  CAS  Google Scholar 

  • Uchimiya M, Bannon DI (2013) Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH. J Agric Food Chem 61:7679–7688

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Chan K, Cowie A, Wainberg R, Morris S (2007) Papermill char: benefits to soil health and plant production. Proceedings of the Conference of the International Agrichar Initiative. 30 April- 2 May 2007, Terrigal, NSW, Australia

  • Waqas M, Khan S, Qing H, Reid BJ, Chao C (2014) The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105:53–61

    Article  CAS  Google Scholar 

  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren A, Reid R (2008) Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304:73–87

    Article  CAS  Google Scholar 

  • Young S (2013) Chemistry of heavy metals and metalloids in soils. In: Alloway B (ed) Heavy metals in soils—trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 51–96

    Chapter  Google Scholar 

  • Zhao L, Cao X, Wang Q, Yang T, Xu S (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42:545–552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Austrian Research Promotion Agency (FFG, project number 825438), by the NSF-Basic Research for Enabling Agricultural Development program (BREAD grant number IOS-0965336), and the Fondation des Fondateurs. The authors are also grateful to Sophie Zechmeister-Boltenstern, Ewald Brauner, Astrid Hobel, Elisabeth Kopecky, Angelika Hromatka, and Karin Hackl from the Institute of Soil Research, BOKU, Vienna, to Bernhard Wimmer, Christian Mayer, and Patrick Kobe from the Austrian Institute of Technology (AIT) as well as Kelly Hanley and Murray McBride from the Department of Crop and Soil Sciences, Cornell University, Ithaca, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Zehetner.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloss, S., Zehetner, F., Buecker, J. et al. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environ Sci Pollut Res 22, 4513–4526 (2015). https://doi.org/10.1007/s11356-014-3685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3685-y

Keywords

Navigation