Skip to main content

Advertisement

Log in

Temporal investigation of radionuclides and heavy metals in a coastal mining area at Ierissos Gulf, Greece

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Vertical variations of radionuclides, trace metals, and major elements were determined in two sediment cores, which were collected in the marine environment of Ierissos Gulf near Stratoni’s mining area. The enrichment factors (EFs) were also estimated and provided moderately severe to extremely severe enrichment for most trace elements and Mn, describing the anthropogenic influence in the gulf during the previous century. According to the applied dating models based on 210Pb and 137Cs, the effect in the marine sediment due to the exploitation of pyrite for the production of sulfuric acid during 1912–1920 was observed. Additionally, the decrease of mining activity during 1935–1945 due to the Second World War and the type of ore exploitation, the alteration of the exploited ores, and the construction and operation of Olympiada’s floatation plant during 1950–1970 were identified. The end of tailing discharging into the marine environment during 1980–2010 was also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Australian and New Zealand Environment and Conservation Council (ANZECC) (2000) Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy, paper No 4, Vol. 2, chapter 8

  • Baskaran M, Nix J, Kuyper C, Karunakara N (2014) Problems with the dating of sediment core using excess 210Pb in a freshwater system impacted by large scale watershed changes. J Environ Radioact 138:355–363. https://doi.org/10.1016/j.jenvrad.2014.07.006

    Article  CAS  Google Scholar 

  • Bersanti M, Delbono I, Schirone A, Langone L, Miserocchi S, Salvi S, Delfanti R (2011) Sediment reworking rates in deep sediments of the Mediterranean Sea. Sci Total Environ 409:2959–2970. https://doi.org/10.1016/j.scitotenv.2011.04.025

    Article  CAS  Google Scholar 

  • Birch GF (2017) Determination of sediment metal background concentrations and enrichment in marine environments – a critical review. Sci Total Environ 580:813–831. https://doi.org/10.1016/j.scitotenv.2016.12.028

    Article  CAS  Google Scholar 

  • Birch GF, Davies K (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Coastal GIS, Woodcoffe CD and Furness RA (eds) Wollongong University Papers in Center for Maritime Policy, 14, Australia, pp 371-380

  • Burton GA (2002) Sediment quality criteria in use around the world. Limnology 3:65–76. https://doi.org/10.1007/s102010200008

    Article  CAS  Google Scholar 

  • Eleftheriou G, Tsabaris C, Papageorgiou DK, Patiris DL, Androulakaki E, Pappa FK (2018) Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean. J Radioanal Nucl Chem 316:655–671. https://doi.org/10.1007/s10967-018-5802-8

    Article  CAS  Google Scholar 

  • European Commission (EC) (2003) Effluent and dose control from European Union NORM industries — assessment of current situation and proposal for a harmonized community approach, Radiation Protection 135, Office for Official Publications of the European Communities, Luxembourg

  • Ferrand E, Eyrolle F, Radakovitch O, Provansal M, Dufour S, Vella C, Raccasi G, Gurriaran R (2012) Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rhone River (South-East France). Geochim Cosmochim Acta 82:163–182. https://doi.org/10.1016/j.gca.2011.11.023

    Article  CAS  Google Scholar 

  • Folk RL (1974) Petrology of the Sedimentary Rocks. Hemphill Publishing Company, Austin, p 182

    Google Scholar 

  • Gilg HA, Frei R (1994) Chronology of magmatism and mineralization in the Kassandra mining area, Greece: the potentials and limitations of dating hydrothermal illites. Geochim Cosmochim Acta 58:2107–2122

    Article  CAS  Google Scholar 

  • Grygar TM, Elznicova J, Kiss T, Smith HG (2016) Using sedimentary archives to reconstruct pollution history and sediment provenance: the Ohre River, Czech Republic. Catena 144:109–129. https://doi.org/10.1016/j.catena.2016.05.004

    Article  CAS  Google Scholar 

  • Hadjibiros K, Mantziaras ID, Sakellariadis DG, Giannakidou C, Katsiri A (2006) Pollution risk assessment from European mining sites and preliminary results from tailings dams in Greece. Proceedings of the 8th International Conference: Protection and Restoration of the Environment, 3-7 July 2006, Crete, Greece.

  • International Atomic Energy Agency (IAEA) (2003) Collection and Preparation of Bottom Sediment Samples for Analysis of Radionuclides and Trace Elements. IAEATECDOC-1360. IAEA, Vienna.

  • Kalfas CA, Axiotis M, Tsabaris C (2016) SPECTRW: A software package for nuclear and atomic spectroscopy. Nucl Inst Methods Phys Res A 830:265–274. https://doi.org/10.1016/j.nima.2016.05.098

    Article  CAS  Google Scholar 

  • Karageorgis AP, Anagnostou CL, Kaberi H (2005) Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Appl Geochem 20:69–88. https://doi.org/10.1016/j.apgeochem.2004.07.008

    Article  CAS  Google Scholar 

  • Karageorgis AP, Katsanevakis S, Kaberi H (2009) Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water Air Soil Pollut 204:243–258. https://doi.org/10.1007/s11270-009-0041-9

    Article  CAS  Google Scholar 

  • Kelepertsis A, Argyraki A, Alexakis D (2006) Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochem Explor Environ A 6:349–355. https://doi.org/10.1144/1467-7873/05-101

    Article  CAS  Google Scholar 

  • Kelepertzis E (2013) Heavy metals baseline concentrations in soft tissues of Patell sp. from the Stratoni coastal environment, NE Greece. Ecol Chem Eng S 20:141–149. https://doi.org/10.2478/eces-2013-0011

    Article  CAS  Google Scholar 

  • Kelepertzis E, Argyraki A, Daftsis E (2012) Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: a pre-mining survey. J Geochem Explor 114:70–81. https://doi.org/10.1016/j.gexplo.2011.12.006

    Article  CAS  Google Scholar 

  • Lazaridou-Dimitriadou M, Koukoumides C, Lekka E, Gaidagis G (2004) Integrative evaluation of the ecological quality of metalliferous streams (Chalkidiki, Macadonia, Hellas). Environ Monit Assess 90:59–86. https://doi.org/10.1023/B:EMAS.0000009230.24795.01

    Article  Google Scholar 

  • Mejjad N, Laissaoui A, El-Hammoumi O, Fekri A, Amsil H, El-Yahyaoui A, Benkdad A (2018) Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco). Environ Sci Pollut Res 25:22872–22888. https://doi.org/10.1007/s11356-018-2370-y

    Article  CAS  Google Scholar 

  • Noli F, Tsamos P (2018) Seasonal variations of natural radionuclides, minor and trace elements in lake sediments and water in a lignite mining area of North-Western Greece. Environ Sci Pollut Res 25:12222–12233. https://doi.org/10.1007/s11356-017-9801-z

    Article  CAS  Google Scholar 

  • Ontario Ministry of Environment and Energy (OMEE) (1993) Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ministry of Environment and Energy. ISBN0-7778-9248-7

  • Paiva I, Marques R, Santos M, Reis M, Prudencio MI, Waerenborgh JC, Dias MI, Russo D, Cardoso G, Vieira BJC, Carvalho E, Rosa C, Lobarinhas D, Diamantino C, Pinto R (2019) Naturally occurring radioactive material and risk assessment of tailings of polymetallic and Ra/U mines from legacy sites. Chemosphere 223:171–179. https://doi.org/10.1016/j.chemosphere.2019.02.057

    Article  CAS  Google Scholar 

  • Panagopoulos I, Karayannidis A, Adam K, Aravossis K (2009) Application of risk management techniques for the remediation of an old mining site in Greece. Waste Manag 29:1739–1746. https://doi.org/10.1016/j.wasman.2008.11.017

    Article  CAS  Google Scholar 

  • Papadopoulos A, Christofides G, Koroneos A, Stoulos A, Papastefanou C (2013) Radioactive secular equilibrium in 238U and 232Th series in granitoids from Greece. Appl Radiat Isot 75:95–104. https://doi.org/10.1016/j.apradiso.2013.02.006

    Article  CAS  Google Scholar 

  • Pappa FK (2018) Study and dispersion of radionuclides and heavy metals in coastal areas of Greece, characterized by active and past mining activities, National Technical University of Athens (PhD thesis-in English)

  • Pappa FK, Tsabaris C, Ioannidou A, Patiris DL, Kaberi H, Pashalidis I, Elefteriou G, Androulakaki AG, Vlastou R (2016) Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl Radiat Isot 116:22–33. https://doi.org/10.1016/j.apradiso.2016.07.006

    Article  CAS  Google Scholar 

  • Pappa FK, Tsabaris C, Patiris DL, Androulakaki EG, Eleftheriou G, Betsou C, Michalopoulou V, Kokkoris M, Vlastou R (2018) Historical trends and assessment of radionuclides and heavy metals in sediments near an abandoned mine, Lavrio, Greece. Environ Sci Pollut Res 1-17. https://doi.org/10.1007/s11356-018-2984-0

  • Pappa FK, Tsabaris C, Patiris DL, Androulakaki EG, Ioannidou A, Eleftheriou G, Kokkoris M, Vlastou R (2019) Dispersion pattern of 226Ra and 235U using the ERICA Tool in the coastal mining area, Ierissos Gulf, Greece. Appl Radiat Isot 145:198–204. https://doi.org/10.1016/j.apradiso.2018.12.021

    Article  CAS  Google Scholar 

  • Patiris DL, Tsabaris C, Anagnostou CL, Androulakaki EG, Pappa FK, Eleftheriou G, Sgouros G (2016) Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf. J Environ Radioact 157:1–15. https://doi.org/10.1016/j.jenvrad.2016.02.025

    Article  CAS  Google Scholar 

  • Pavlovic G, Barisic D, Lovrencic I, Orescanin V, Prohic E (2005) Use of fallout 137Cs for documenting the chronology of overbank sediments from the river Sava, Croatia, and interpreting their geochemical patterns. Environ Geol 47:475–481. https://doi.org/10.1007/s00254-004-1167-0

    Article  CAS  Google Scholar 

  • Persianis D, Katsikis J, Karageorgiou DE (2010) The genetic hypothesis of the uraniferus mineralization, eastern Chalkidiki (Northern Greece). Bulletin of the Geological Society of Greece, Proceedings of the 12th international congress, Patra

  • Riba I, DelValls TA, Forja JM, Gomez-Parra A (2002) Influence of the Aznalcollar mining spill on the vertical distribution of heavy metals in sediments from the Guadalquivir estuary (SW Spain). Mar Pollut Bull 44:39–47. https://doi.org/10.1016/S0025-326X(01)00171-0

    Article  CAS  Google Scholar 

  • Ruiz-Fernandez AC, Hillaire-Marcel C (2009) 210Pb-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: potential and limitations. Mar Pollut Bull 59:134–145. https://doi.org/10.1016/j.marpolbul.2009.05.006

    Article  CAS  Google Scholar 

  • Salomons W, Forstner U (1984) Metals in the Hydrocycle. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Stamatis N, Ioannidou D, Christoforidis A, Koutrakis E (2002) Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulfs, North Aegean Sea, Greece. Environ Monit Assess 80:33–49

    Article  CAS  Google Scholar 

  • Szarlowicz K, Reczynski W, Misiak R, Kubica B (2013) Radionuclides and heavy metal concentrations as complementary tools for studying the impact of industrialization on the environment. J Radioanal Nucl Chem 298:1323–1333. https://doi.org/10.1007/s10967-013-2548-1

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresun 33:566–575

    Article  Google Scholar 

  • Tsabaris C, Eleftheriou G, Kapsimalis V, Anagnostou C, Vlastou R, Durmishi C, Kedhi M, Kalfas CA (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl Radiat Isot 65:445–453. https://doi.org/10.1016/j.apradiso.2006.11.006

    Article  CAS  Google Scholar 

  • Tsabaris C, Evangeliou N, Fillis E, Sotiropoulou M, Patiris DL, Florou H (2012) Distribution of natural radioactivity in sediment cores from Amvrakikos Gulf 26 (Western Greece) as part of IAEA’s campaign in Adriatic and Ionian Seas. Radiat Prot Dosim 150:474–487. https://doi.org/10.1093/rpd/ncr436

    Article  CAS  Google Scholar 

  • Tzamos E, Papadopoulos A, Grieco G, Stoulos S, Bussolesi M, Daftsis E, Vagli E, Dimitriadis D, Godelitsas A (2019) Investigation of trace and critical elements (including actinides) in flotation sulphide concentrates of Kassandra Mines (Chalkidiki, Greece). Geosciences 9:164. https://doi.org/10.3390/geosciences9040164

    Article  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. Report to General Assembly with Scientific Annexes, United Nations, New York

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2000) Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines, EPA 905/R-00/007, June 2000

  • Vaalgamaa S, Korhola A (2007) Geochemical signatures of two different coastal depositional environments within the same catchment. J Paleolimnol 38:241–260. https://doi.org/10.1007/s10933-006-9071-0

    Article  Google Scholar 

  • Valette-Silver NJ (1993) The use of sediment core to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries 16(3B):577–588. https://doi.org/10.2307/1352796

    Article  CAS  Google Scholar 

  • Wang S, Wang Y, Zhang R, Wang W, Xu D, Guo J, Li P, Yu K (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654. https://doi.org/10.1016/j.scitotenv.2015.06.035

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Wennrich R, Mattusch J, Morgenstem P, Freyer K, Treutler HC, Stark HJ, Bruggemann L, Paschke A, Daus B, Weiss H (2004) Characterization of sediments in an abandoned mining area; a case study of Mansfeld region, Germany. Environ Geol 45:818–833. https://doi.org/10.1007/s00254-003-0942-7

    Article  CAS  Google Scholar 

  • Yao S, Xue B (2014) Heavy metal records in the sediments of Nanyihu Lake, China: influencing factors and source identification. J Paleolimnol 51:15–27. https://doi.org/10.1007/s10933-013-9752-4

    Article  Google Scholar 

  • Yao S, Xue B (2016) Sediment records of the metal pollution at Chihu Lake near a copper mine at the middle Yangtze River in China. J Limnol 75(1):121–134. https://doi.org/10.4081/jlimnol.2015.1241

    Article  Google Scholar 

  • Zeng H, Wu J (2009) Sedimentary records of heavy metal pollution in Fuxian Lake, Yunnan Province, China: intensity, history, and sources. Pedosphere 19(5):562–569. https://doi.org/10.1016/S1002-0160(09)60150-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mrs. F.K. Pappa would like to acknowledge A.G. Leventis Foundation for the financial support of her PhD thesis, as well as Mr. Costas Papathanasiou for the fruitful discussions regarding the interpretation of the metal and metal flux profiles in the historical reconstruction section. Mrs. F.K. Pappa would also like to thank Mr. K. Sarantakos for the discussions regarding the classification of the metal enrichment into the sediment. The crew of the R/V AEGEAO is also acknowledged for providing samples from the offshore part of Ierissos Gulf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filothei K. Pappa.

Additional information

Responsible editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappa, F.K., Tsabaris, C., Patiris, D.L. et al. Temporal investigation of radionuclides and heavy metals in a coastal mining area at Ierissos Gulf, Greece. Environ Sci Pollut Res 26, 27457–27469 (2019). https://doi.org/10.1007/s11356-019-05921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05921-5

Keywords

Navigation