Skip to main content

Advertisement

Log in

Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Samples of soil, iron ore, and airborne particulate matter (size <10 μm) were analyzed with the main goal of investigating the differentiating physicochemical properties of their ferruginous compounds. These data were used to identify whether the sources of airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe2O3). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the trace ability of hematite to its source of emission. Even the atmospheric air on regions relatively far away from the mining activities is also significantly influenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artaxo P, Martins JV, Yamasoe MA, Procópio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AMC (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. Journal of Geophysical Research: Atmospheres 107(D-20):LBA 49-1–LBA 49-14

    Google Scholar 

  • BNDES (2016) Banco Nacional de Desenvolvimento Econômico e Social. Minério de Ferro (http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/bnset/set3906.pdf), accessed in Feb 2016

  • Carpenter EE, Long JW, Rolison DR, Logan MS, Pettigrew K, Stroud RM, Theil Kuhn L, Rosendahl Hansen B, Mørup S (2006) Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels. J Appl Phys 99:08N711

    Article  Google Scholar 

  • CETESB (2012) Companhia de Tecnologia de Saneamento Ambiental. Manual de Gerenciamento de Áreas Contaminadas. Projeto Cetesb–GTZ, 1999 (http://www.cetesb.sp.gov.br/areas-contaminadas/manual-de-gerenciamento-de-ACs/7-), accessed in Dec 2012

  • Coey JMD (1988) Magnetic properties of iron in soil iron oxides and clay minerals. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. Reidel, Dordrecht, pp 397–466

    Chapter  Google Scholar 

  • Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

    Article  CAS  Google Scholar 

  • Curi N, Motta PEF, Fabris JD, Oliveira LCA (2008) Espectroscopia Mössbauer na caracterização de compostos ferrosos em solos e sua relação com retenção de fósforo. Quim Nova 31(6):1467–1471

    Article  CAS  Google Scholar 

  • FEAM (Fundação Estadual do Meio Ambiente) (2010). UFV-CETEC-UFLA-FEAM. Mapa de solos do Estado de Minas Gerais. Belo Horizonte. (http://www.feam.br/noticias/1/949-mapas-de-solo-do-estado-de-minas-gerais), accessed in Sep 2013

  • Ferreira BA, Fabris JD, Santana DP, Curi N (2003) Óxidos de ferro das frações areia e silte de um nitossolo desenvolvido de basalto. Rev bras cienc Solo 27:405–413

    Article  CAS  Google Scholar 

  • Figueiredo M d A, Fabris JD, Varajão AFDC, Couceiro PRC, Loutfi IS, Azevedo IS, Garg VK (2006) Óxidos de ferro de solos formados sobre gnaisse do Complexo Bação, Quadrilátero Ferrífero. Minas Gerais Pesqui agropecu bras 41(2):313–321

    Article  Google Scholar 

  • Gioda A, Sales JA, Cavalcanti PMS, Maia MF, Maia LFPG, Aquino Neto FR (2004) Evaluation of air quality in Volta Redonda, the main metallurgical industrial city in Brazil. J Braz Chem Soc 15(6):856–864

    Article  CAS  Google Scholar 

  • Gonser U (1975) Mössbauer spectroscopy. V 5. Springer, New York

    Book  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd., London

    Book  Google Scholar 

  • Herber RH (1965) Introduction to Mossbauer spectroscopy. J Chem Educ 42:180–187

    Article  CAS  Google Scholar 

  • IARC (INTERNATIONAL AGENCY OF RESEARCH OF CANCER) (2013) IARC: Outdoor air pollution a leading environmental cause of cancer deaths: Press Realease, N° 221, 17 October 2013. (http://www.iarc.fr/en/media-centre/iarcnews/pdf/pr221_E.pdf), accessed in Feb 2014

  • Jacomino VMF, Barreto AA, Tavares FVF, Peixoto CM, Rodrigues PCH (2009) Avaliação da qualidade do ar em um pólo produtor de ferro-gusa. Eng Sanit Ambient 14(4):511–520

    Article  Google Scholar 

  • Kharytonov M, Zberovsky A, Drizhenko A and Babiy A (2005) Air pollution assessment inside and around iron ore quarries. In Farago I et al. (eds.), Advances in Air Pollution Modeling for Environmental Security 263–274

  • Kopcewicz B, Kopcewicz M (2001) Long-term measurements of iron-containing aerosols by Mössbauer spectroscopy in Poland. Atmos Environ 35:3739–3747

    Article  CAS  Google Scholar 

  • Kuzmann E, Garg VK, de Souza Júnior PA, Schuch LA, de Oliveira AC, Homonnay Z, Vértes A (2000) Mössbauer investigation of characteristic distribution of iron oxides in sediments from Antarctica. J Radioanal Nucl Chem 246(1):61–68

    Article  CAS  Google Scholar 

  • MCA (MINERALS COUNCIL OF AUSTRALIA) 2016 The world’s biggest iron ore producing companies.(http://www.ironorefacts.com/the-facts/iron-ore-global-markets/), accessed in June 2016

  • Mohiuddin K, Strezov V, Nelson PF, Stelcer E (2014) Characterization of trace metals in atmospheric particles in the vicinity of iron and steel making industries in Australia. Atmos Environ 83:72–79

    Article  CAS  Google Scholar 

  • Murad E (1998) The characterization of soils, clays, and clay firing products. Hyperfine Interact 111:251–259

    Article  CAS  Google Scholar 

  • Murad E, Schwertmann U (1986) Influence of al substitution and crystal size on the room-temperature Mössbauer spectrum of hematite. Clay Clay Miner 34(1):1–6

    Article  CAS  Google Scholar 

  • Muxworthy AR, Schmidbauer EN, Petersen N (2002) Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany. Geophys J Int 150:558–570

    Article  Google Scholar 

  • Pereira ARP, Fabris JD, Rios FJ, Rosière CA, Couceiro PRC, Ferreira FF, de Menezes LM (2010) Hematite from a mining area in the east border of Quadrilátero Ferrífero, Minas Gerais, Brazil. Hyperfine Interactions 195:69–76

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Queiroz PGM, Jacomino VMF, Menezes MA d BC (2007) Composição elementar do material particulado presente no aerossol atmosférico do município de Sete Lagoas, Minas Gerais. Quím Nova 30(5):1233–1239

    Article  CAS  Google Scholar 

  • Ravi S, D'Odorico P, Breshears DD, Field JP, Goudie A, Huxman TE (2011) Aeolian processes and the biosphere: interactions and feedback loops. Rev Geophys 49:RG3001

    Article  Google Scholar 

  • Saldiva PHN (2007) Emissões de poluentes atmosféricos por fontes móveis e estimativa dos efeitos em saúde em 6 regiões metropolitanas brasileiras. LAPAE, São Paulo

    Google Scholar 

  • Schneider IL, Teixeira EC, Rodrigues MLK, Rolim SBA (2014) Metal content and distribution in surface sediments in an industrial region. An Acad Bras Ciênc 86(3):1043–1061

    Article  Google Scholar 

  • Singh G, Perwez A (2015) Depreciation in ambient air quality in iron ore mining region of Goa. Current World Environment 10(1):149–160

    Article  Google Scholar 

  • Smith KR, Jerrett M, Anderson HR, Burnett RT, Stone V, Derwent R, Atkinson RW, Cohen A, Shonkoff SB, Krewski D, Pope CA, Thun MJ, Thurston G (2009) Health and climate change 5: public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet 374(9707):2091–2103

    Article  Google Scholar 

  • Souza PA Jr, de Queiroz RS, Morimoto T, Guimarães AF, Garg VK, Klingelhöfer G (2002) Precise indication of air pollution sources. Hyperfine Interact 139(140):641–649

    Google Scholar 

  • Spier CA, de Oliveira SMB, Rosiere CA, Ardisson JD (2008) Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil. Mineral Deposita 43:229–254

    Article  CAS  Google Scholar 

  • Tavares FVF, Ardisson JD, Rodrigues PCH, Brito W, Macedo WAA, Jacomino VMF (2014) Characterization of iron in airborne particulate matter. Hyperfine Interact 224(1):109–119

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency), Washington, DC (USA) (1992) Protocol for Determining the Best Performing Model. Washington, DC, 1990. (EPA-454/R-92-025)

  • USEPA (United States Environmental Protection Agency), Washington, DC (USA) (2004) Aermod: description of model formulation. Washington, DC 2004. (EPA-454/R-03-004)

  • Van der Woude F (1966) Mössbauer effect in α-Fe2O3. Phys Stat Sol 17:417–432

    Article  Google Scholar 

  • Viana CO, Menezes MA d BC, Maia ECP (2011) Epiphytic lichens on air biomonitoring in Belo Horizonte City, Brazil: a preliminary assessment. Int J Environ Health 5:324–337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Alberto Avellar Barreto for his help to model the atmospheric dispersion and also the Center for the Development of the Nuclear Technology (CDTN; Brazil), Coordination for the Improvement of Higher Level Personnel (CAPES; Brazil), Brazilian National Council for Scientific and Technological Development (CNPq), and Foundation for Supporting the Scientific and Technological Research of the Minas Gerais State (FAPEMIG; Brazil) for funding this project. JDF thanks CAPES (Brazil) for granting his professorship at the UFVJM, under the PVNS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Vasconcelos Fonseca Tavares.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, F.V.F., Ardisson, J.D., Rodrigues, P.C.H. et al. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil. Environ Sci Pollut Res 24, 19683–19692 (2017). https://doi.org/10.1007/s11356-017-9613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9613-1

Keywords

Navigation