Skip to main content

Advertisement

Log in

Concentrations of some heavy metal and macroelements in sediment, water, macrophyte species, and leech (Hirudo sulukii n. sp.) from the Kara Lake, Adiyaman, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Content of some heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and macroelements (Ca, Mg, Na, and K) were determined in samples of water, sediment, macrophytes (Potamogeton crispus, Potamogeton perfoliatus, Myriophyllum spicatum, and Chara vulgaris), and leech (Hirudo sulukii n. sp.) collected from Kara Lake Adiyaman, Turkey at four distinct seasons using inductively coupled plasma optical emission spectrometer (ICP-OES). It was found that the studied heavy metals were completely below the detection limit of ICP-OES for water samples. The results showed that most heavy metals (Ni, Cr, Zn, Fe, and Pb) and macroelements (Mg and Na) had their highest values in sediment samples in August. Increases of heavy metals and macroelements may be due to evaporation because of summer stagnation at this period. The average content of studied elements was in the order of Mn>Ni>Cr>Zn>Fe>Pb>Cu in sediment samples. As a non-essential heavy metal, Cr was the most accumulated in all the macrophytes studied. The average Cr concentration was in the order of P. crispus > P. perfoliatus > M. spicatum > C. vulgaris. In C. vulgaris, the accumulation of Ca was the highest compared with other macrophytes. The accumulation of heavy metal was in the order of Fe>Zn>Cu>Pb>Mn>Cr>Ni>Cd in H. sulukii n. sp. The obtained results showed that the heavy metal and macroelement (Na, Ca, Mg, and K) concentrations in water, sediment, macrophytes, and leech are below the risk values according to the aquatic life pollutant data provided by the U.S. Environmental Protection Agency. Overall, the element contents can be attributable to the geological sources because of the general absence of serious pollution in Kara Lake, Adiyaman, Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. B., Vajpayee, P., Tripathi, R. D., Rai, U. N., Kummer, A., Singh, N., Behl, H. M., & Singh, S. P. (2000). Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin Environmental Contamination Toxicology, 65, 573–582.

    CAS  Google Scholar 

  • Allen, S. (1989). Analysis of ecological materials (2nd ed.). Oxford: Blackwell Scientific publications.

    Google Scholar 

  • Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Oxford: Blackwell Scientific Publication.

    Google Scholar 

  • Al-Saadi, H. A., Al-Lami, A. A., Hassan, F. A., & Al-Dulymi, A. A. (2002). Heavy metals in water, suspended particles, sediments and aquatic plants of Habbaniye Lake, Iraq. International Journal of Environmental Studies, 59(5), 589–598.

    CAS  Google Scholar 

  • Aşıkkutlu, B., Akkoz, C., & Ozturk, B. Y. (2014). Some water quality properties of Çavuscu Lake (Konya, Ilgın). Selcuk University, Science Faculty Journal, 39, 1–9.

    Google Scholar 

  • Ayas, Z., Ekmekci, G., Yerli, S. V., & Ozmen, M. (2007). Heavy metal accumulation in water, sediments and fishes of Nallihan Bird Paradise, Turkey. Journal of Environmental Biology., 28(3), 545–549.

    CAS  Google Scholar 

  • Baker, D. E., & Amacher, M. C. (1982). Nickel, copper, zinc and cadmium. In A. L. Page & R. H. Keeney (Eds.), Method soil analysis, part 2. Chemical and microbiological properties (pp. 323–336). New York: ASA Publishers Inc..

    Google Scholar 

  • Baldantoni, D., Alfani, A., & Tommasi, P. D. (2004). Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, 49–156.

    Google Scholar 

  • Baldantoni, D., Ligrone, R., & Alfani, A. (2009). Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. Journal of Geochemical Exploration, 101(2), 166–174.

    CAS  Google Scholar 

  • Besada, V., Fumega, J., & Vaamond, A. (2001). Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North Atlantic coast 1991-1999. The Science of the Total Environment, 1–15.

  • Bezmaternykh, D. M. (2007). Zoobenthos as an indicator of water ecosystems state in Western Siberia. Ecology. A Series of Analytical Reviews of World Literature, 85, 1–86.

    Google Scholar 

  • Borin, M., & Salvato, M. (2012). Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering, 46, 34–42.

    Google Scholar 

  • Chester, R., & Voutsinou, F. G. (1981). The initial assessment of trace metal pollution in coastal sediments. Marine Pollution Bulletin, 12(3), 84–91.

    CAS  Google Scholar 

  • Dagaonkar, A., & Saksena, D. N. (1992). Physico-chemical and biological characterization of a temple tank, Kaisa Sagar, Gwalior, Madhya Paradesh. Hydrobiological Journal, 8(1), 11–19.

    Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    CAS  Google Scholar 

  • Egemen, O. (2006). Water Quality, Ege University Faculty of aquaculture. Publication no:14, 6. Print, Bornova İzmir.

  • Galbraith, L. M., & Burns, C. W. (2007). Linking land-use, water body type and water quality in southern New Zealand. Landscape Ecology, 22, 231–241.

    Google Scholar 

  • Galczynska, M., Gamrat, R., Burczyk, P., Horak, A., & Kot, M. (2013). The influence of human impact and water surface stability on the concentration of selected mineral macroelements in mid-field ponds. Water-Environment-Rural Areas, 3(3/43), 41–54.

    Google Scholar 

  • Gangaiya, P., Tabudravu, J., South, R., & Sotheeswaran, S. (2001). Heavy metal contamination of the Lami coastal environment, Fiji. The South Pacific Journal of Natural Science, 19, 24–29.

    Google Scholar 

  • Grochwska, J., & Tandyrak, R. (2009). The influence of the use of land on the content of calcium, magnesium, iron and manganese in water exemplified in three lakes in Olsztyn vicinity. Limnological Review, 9(1), 9–16.

    Google Scholar 

  • Hadring, J. P., & Whitton, B. A. (1978). Zinc, cadmium and lead in water sediments and submerged plants of the Derwent reservoir, Northern England. Water Research, 12, 307–316.

    Google Scholar 

  • Haro, R., Banuelos, M. A., & Rodriguez-Navarro, A. (2010). High affinity sodium uptake in land plants. Plant and Cell Physiology, 51, 68–79.

    CAS  Google Scholar 

  • Huguet, G., & Molinas, M. (1992). Changes in epithelial cells in Hirudo medicinalis during wound healing. Journal of Invertebrate Pathology, 59, 11–17.

    CAS  Google Scholar 

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of river Yamuna, India. Water Research, 38(3), 569–578.

    CAS  Google Scholar 

  • Karadede, H., & Unlu, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Ataturk dam lake (Euphrates), Turkey. Chemosphere, 41, 1371–1376.

    CAS  Google Scholar 

  • Karouna-Renier, N. K., & Sparling, D. W. (2001). Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environmental Pollution, 112, 183–192.

    CAS  Google Scholar 

  • Kaygorodova, I. A., Mandzyak, N. B., Petryaeva, E. Y., & Pronin, N. M. (2014). Genetic diversity of leeches in Lake Gusinoe (Eastern Siberia, Russia). The Scientific World Journal, 1–11.

  • Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92, 197–200.

    CAS  Google Scholar 

  • Kır, I., Ozan, S. T., & Tuncay, Y. (2007). The seasonal variations of some heavy metals in Kovada Lake’s water and sediment. Ege University, Journal of Fisheries & Aquatic Sciences., 24(1–2), 155–158.

    Google Scholar 

  • Kufel, L., & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes. Aquatic Botany, 72, 249–260.

    Google Scholar 

  • Liu, H., & Li, W. (2011). Dissolved trace elements and heavy metals from the shallow lakes in the middle and lower reaches of the Yangtze River region, China. Environmental Earth Science, 62, 1503–1511.

    CAS  Google Scholar 

  • MacDonald, D. D. (1994). A review of environmental quality criteria and guidelines for priority substances in the Fraser River basin. Canada: MacDonald Environmental Sciences Limited, Environmental Conservation Branch.

    Google Scholar 

  • Mallick, J. (2017). Hydrogeochemical characteristics and assessment of water quality in the Al-Saad Lake, Abha Saudi Arabia. Applied Water Science, 7, 2869–2882.

    CAS  Google Scholar 

  • Mallick, J., Alasher, Y., Shams Al-Deen, M., Ahmed, M., & Hasan, M. A. (2014). Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto International, 29, 915–940.

    Google Scholar 

  • Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetation, 103, 1–30.

    Google Scholar 

  • Markert, B. (1993). Plant as biomonitors (B) (Markert. ed.). New York/Basel/Cambridge: VCH Weinheim.

    Google Scholar 

  • Marschner, P. (2012). Marschner’s Mineral Nutrition of Higher Plants (3rd ed.pp. 178–189). London: Academic Press.

    Google Scholar 

  • Muramoto, S. (1983). Elimination of copper from Cu-contaminated fish by long term exposure to EDTA and freshwater. Journal of Environmental Science and Health A, 18, 455–461.

    Google Scholar 

  • Neubert, E., & Nesemann, H. (1999). Annelida, clitellata: branchiobdella, acanthobdellea, hirudinea—süβwasserfauna von mitteleuropa 6/2. Spektrum Akademischer Verlag, Heidelberg, 178.

  • Nicholls, J. G., Martin, A. R., & Wallace, B. G. (1992). From neuron to brain. Massachusetts: Sinauer Associates, Sunderland.

    Google Scholar 

  • Odokuma, L. O., & Ijeomah, S. O. (2003). Seasonal changes in the heavy metal resistant bacterial population of the new Calabar River, Nigeria. Global Journal of Pure and Applied Sciences, 9(4), 425–434.

    CAS  Google Scholar 

  • Rai, P. K. (2009). Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environmental Monitoring and Assessment, 158, 433–457.

    CAS  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes; removal of heavy metals. Ecological Engineering, 5, 5–12.

    Google Scholar 

  • Ramadan, A. A. (2003). Heavy metal pollution and biomonitoring plants in Lake Manzala, Egypt. Pakistan Journal Biological Sciences, 6(13), 1108–1117.

    Google Scholar 

  • Romanova, E. M., & Klimina, O. M. (2010). Bioresources class Hirudinea in the area of the middle Volga region: ecological significance and prospects. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 1(12), 208–211.

    Google Scholar 

  • Rubio, C., & Hardisson, A. (1999). Lead toxicology and the presence of lead in foods. Alimentaria, 36, 77–85.

    Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: process, prediction, prevention. Journal of Geochemical Exploration, 52, 5–23.

    CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (1996). Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicology Environmental Safety, 35, 242–247.

    CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2004). Toxic metals in aquatic plants in surface water polluted by copper mining industry. Ecotoxicology Environmental Safety, 59, 64–69.

    CAS  Google Scholar 

  • Sawidis, T., Chettri, M. K., Zachariadis, G. A., & Stratis, J. A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology Environmental Safety, 32, 73–80.

    CAS  Google Scholar 

  • Sawyer, R. T. (1986). Leech biology and behaviour (Vol. 3). Oxford: Clarendon Press.

    Google Scholar 

  • Shaikh, P. R., & Bhosle Arjun, B. (2011). Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. &Chara sp. Advances in Applied Science Research, 2(1), 214–220.

    CAS  Google Scholar 

  • Sladecek, V., & Kosel, V. (1984). Indicator value of freshwater leeches (Hirudinea) with a key to determination of European species. Acta Hydrochimica et Hydrobiologica, 12, 451–461.

    Google Scholar 

  • SKKY (2004). Su Kirliliği Kontrolü Yönetmeliği. Turkish Official Gazette, 31 December 2004, no. 25687.

  • SKKY (2008). Su Kirliliği Kontrolü Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. Turkish Official Gazette, 13 February 2008, no. 26786.

  • Turkish Standards 266. (2005). Regulation on water for human consumption purposes. Ankara: Waters-Drinking and Using Waters. Turkish Standards.

    Google Scholar 

  • Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32(2), 208–218.

  • Viessman Jr., W., & Hammer, M. J. (1985). Water supply and pollution control (4th ed.). New York: Harper Row Publications.

    Google Scholar 

  • Wang, Z., Yao, L., Liu, G., & Liu, W. (2014). Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicology Environmental Safety, 107, 200–206.

    CAS  Google Scholar 

  • WHO (1996). Permissible limits of heavy metals in soil and plants (Geneva: World Health Organization), Switzerland.

  • Xing, W., Wu, H., Hao, B., Huang, W., & Liu, G. (2013). Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environmental Science Technology, 47, 4695–4703.

    CAS  Google Scholar 

  • Yang, J., Chen, I., Liu, L. Z., Shi, W. I., & Meng, X. Z. (2014). Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicology Environmental Safety, 102, 129–135.

    CAS  Google Scholar 

  • Zapkuviene, D., & Petrauskiene, L. (2000). Medicinal leech: anatomy, physiology, ecology. Vilnius: Institute of Ecology.

    Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27(3), 715–721.

  • Zeng, H., & Wu, J. (2013). Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China intensity, sources and spatial patterns. International Journal of Environmental Research Public Health., 10, 793–807.

    CAS  Google Scholar 

  • Zhang, Z., Rosenhouse-Dantsker, A., Tang, Q. Y., Noskov, S., & Logothetis, D. E. (2010). The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels. Journal of Neuroscience, 30, 7554–7562.

    CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Qian, J. H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 339–344.

    CAS  Google Scholar 

Download references

Funding

Adiyaman University Scientific Research Commission is gratefully acknowledged by the authors because of the support with the grant number, AMYOBAP 2009-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonca Keser.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keser, G., Topak, Y. & Sevgiler, Y. Concentrations of some heavy metal and macroelements in sediment, water, macrophyte species, and leech (Hirudo sulukii n. sp.) from the Kara Lake, Adiyaman, Turkey. Environ Monit Assess 192, 75 (2020). https://doi.org/10.1007/s10661-019-8035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8035-6

Keywords

Navigation