Skip to main content
Log in

EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg−1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg−1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg−1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad, M., Bajahlan, A. S., & Al-Hajery, K. A. (2010). Potential impacts of industrial reclaimed water on landscape irrigation. International Journal of Agriculture Biology, 12, 707–712.

    CAS  Google Scholar 

  • Akhtar, S., Mahmood-ul-Hassan, M., Ahmad, R., Suthor, V., & Yasin, M. (2013). Metal tolerance potential of filamentous fungi Isolated from soils irrigated with untreated municipal effluent. Soil & Environment, 32, 55–62.

    CAS  Google Scholar 

  • Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., Onaindia, M., et al. (2004). Chelate-enhanced phytoremediation of soils polluted with heavy metals. Environmental Science and Bio/Technology, 3, 55–70.

    Article  CAS  Google Scholar 

  • Amacher, M. C. (1996). Nickel, cadmium, and lead. In D. L. Sparks et al. (Eds.), Methods of soil analysis, Part 3: Chemical methods (pp. 739–768). Madison: Soil Science Society of America, Inc.

  • Barlow, R., Bryant, N., Andersland, J., & Sahi, S. (2000). Lead hyperaccumulation by Sesbania drummondii. In Proceedings Conference on Hazardous Waste Research (pp. 112–114). Pretoria: HSRC.

    Google Scholar 

  • Barrutia, O., Epelde, L., García-Plazaola, J. I., Garbisu, C., & Becerril, J. M. (2009). Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere, 74, 259–264.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  • Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., Malik, M., Angle, J. S., et al. (2000). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In N. Terry, G. Banuelos, & J. Vangronsveld (Eds.), Phytoremediation of contaminated soil and water, ed (pp. 129–158). Boca Raton, Washington DC: Lewis.

    Google Scholar 

  • Ciura, J., Poniedziałek, M., Sękara, A., & Jędrszczyk, E. (2005). The possibility of using crops as metal phytoremediants. Polish Journal of Environmental Studies, 14(1), 17–22.

    CAS  Google Scholar 

  • Coscione, A. R., Aparecida de Abreu, C., & Gabrielli dos Santos, G. C. (2009). Chelating agents to solubilize heavy metals from oxisols contaminated by the addition of organic and inorganic residues. Scienta Agricola (Piracicaba, Braz.), 66(1), 64–70.

    CAS  Google Scholar 

  • Cui, Y., Wang, Q., Dong, Y., Li, H., & Christie, P. (2004). Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant and Soil, 261, 181–188.

    Article  CAS  Google Scholar 

  • Cunningham, S. C., Berti, W. R., & Huang, J. W. (1995). Remediation of contaminated soils and sludges by green plants. In E. Hinchee, J. L. Means, & D. Burris (Eds.), Bioremediation of in-organics (pp. 33–54). Columbus-Richland: Batelle Press.

    Google Scholar 

  • Dane, J. H., & Topp, G. C. (2002). Methods of soil analysis. Part 4. Physical methods. SSSA Book Series No. 5. Madison, WI: SSSA.

    Google Scholar 

  • Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.

    Article  CAS  Google Scholar 

  • Elless, M. P., & Blaylock, M. J. (2000). Amendment optimization to enhance lead extractability from contaminated soils for phytoremediation. International Journal of Phytoremediation, 2, 75–89.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003.

    Article  CAS  Google Scholar 

  • Ewers, U. (1991). Standard guidelines and legislative regulations concerning metals and their compounds. In E. Merian (Ed.), Metals and their compounds in the environment: occurrence, analysis and biological relevance (pp. 458–468). Weinheim: VCH.

    Google Scholar 

  • Feng, M. J., Shen, R. F., Nagao, S., & Tanimoto, F. (2004). Aluminum targets elongating cell wall by reducing cell wall extensibility in wheat roots. Plant Physiology, 5, 583–589.

    Google Scholar 

  • Ginneken, L. V., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, F. M. G., et al. (2007). Phytoremediation for heavy metal contaminated soils combined with energy production. Journal of Environmental Engineering and Landscape Management, 15, 227–236.

    Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1–18.

    Google Scholar 

  • Grčman, H. (2005). Phytoextraction of heavy metals from contaminated soil: expectations and limitations. In Geophysical research abstracts, 7, 01117. European Geosciences Union 2005.

  • Grčman, H., Velikonja-Bolta, S., Vodnik, D., Kos, B., & Lestan, D. (2001). EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.

    Article  Google Scholar 

  • Heidari, R., Khayami, M., & Farboodnia, T. (2005). Effect of pH and EDTA on Pb accumulation in Zee mays seedlings. Journal of Agronomy, 4, 49–54.

    Article  Google Scholar 

  • Hernandez-Allica, J., Barrutia, O., Becerril, J. M., & Garbisu, C. (2003). EDTA reduces the physiological damage of lead on cardoon plants grown hydroponically. Journal of Physique IV, 107, 613.

    Article  CAS  Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. B., & Cunningham, S. D. (1997). Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31, 800–805.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Angle, J. S., Chaney, R. L., & van Berkum, P. (1995). Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. Journal of Environmental Quality, 24, 1199–1204.

    Article  CAS  Google Scholar 

  • Jean, L., Bordas, F., Gautier-Maussard, C., Vernay, O., Hitmi, A., & Bollinger, J. C. (2008). Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environmental Pollution, 153, 555–563.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Komárek, M., Tlustoš, P., Száková, J., Chrastný, V., & Balík, J. (2007a). The role of Fe- and Mn-oxides during EDTA-enhanced phytoextraction of heavy metals. Plant Soil Environment, 53(5), 216–224.

    Google Scholar 

  • Komárek, M., Tlustoš, P., Száková, J., Chrastný, V., & Ettler, V. (2007b). The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 67, 640–651.

    Article  Google Scholar 

  • Kos, B., Greman, H., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environment, 49, 548–553.

    CAS  Google Scholar 

  • Kos, B., & Lešten, D. (2003). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science and Technology, 37, 624–629.

    Article  CAS  Google Scholar 

  • Kovalevskiy, A. L. (1979). Biogeochemical exploration for mineral deposits. Published for the USDI and the NSf (p. 136). New Delhi: American Publ. Co. Pvt.

    Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Li, B., Wang, Q., Huang, B., & Li, S. (2001). Evaluation of the results from a quasi-Tessier’s sequential extraction procedure for heavy metal speciation in soils and sediment by ICP-MS. Analytical Sciences, 17(Supplement), i1561–i1564.

    Google Scholar 

  • Li, H. F., Wang, Q. R., Cui, Y. S., Dong, Y., & Christie, P. (2005). Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study. Science of Total Environment, 339, 179–187.

    Article  CAS  Google Scholar 

  • Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., & Paulsen, G. M. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage sludge farm. Plant and Soil, 257, 171–182.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    Article  CAS  Google Scholar 

  • Luo, C., Shen, Z., & Li, X. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    Article  CAS  Google Scholar 

  • Mahmood, T. (2010). Phytoextraction of heavy metals - the process and scope for remediation of contaminated soils. Soil & Environment, 29, 91–109.

    CAS  Google Scholar 

  • Mahmood-ul-Hassan, M., Suthor, V., Rafique, E., Ahmad, R., & Yasin, M. (2012). Metal contamination of vegetables grown on soils irrigated with untreated municipal effluent. Bulletin of Environmental Contamination and Toxicology, 88, 204–209.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.

    Article  CAS  Google Scholar 

  • Mekala, G.D., Davidson, B., Samad, M., & Boland, A. (2008). A framework for efficient wastewater treatment and recycling systems. Colombo, Sri Lanka: International Water Management Institute. 23p. (IWMI Working Paper 129)

  • Melo, É.E.C., do-Nascimento, C.W.A., de Aguiar Accioly, A.M., & Santos, A.C.Q. (2008). Phytoextraction and fractionation of heavy metals in soil after multiple applications of natural chelants. Scienta Agricola (Piracicaba, Braz.), 65(1), 61-68.

    Google Scholar 

  • Nascimento, C. W. A., & Xing, B. (2006). Phytoextraction: a review on enhanced metal availability and plant accumulation. Scientia Agricola, 63, 299–311.

    Article  Google Scholar 

  • Nasir, A., Arslan, C., Khan, M. A., Nazir, N., Awan, U. K., Ali, M. A., et al. (2012). Industrial waste water management in district Gujranwala of Pakistan - current status and future suggestions. Pakistan Journal of Agricultural Science, 49, 79–85.

    Google Scholar 

  • Nazif, W., Perveen, S., & Shah, S. A. (2006). Evaluation of irrigation water for heavy metals of Akbarpura area. Journal of Agricultural and Biological Science, 1, 51–54.

    Google Scholar 

  • Nowack, B., Schulin, R., & Robinson, B. H. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science and Technology, 40, 5225–5232.

    Article  CAS  Google Scholar 

  • Papassiopi, N., Tambouris, S., & Kontopoulos, A. (1999). Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water, Air, and Soil Pollution, 109, 1–15.

    Article  CAS  Google Scholar 

  • Pereira, B. F. F., de Abreu, C. A., Romeiro, S., Lagôa, A. M. M. A., & Paz-González, A. (2007). Pb-phytoextraction by maize in a Pb-EDTA treated oxisol. Scientia Agricola, 64, 52–60.

    Article  CAS  Google Scholar 

  • Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23, 50–57.

    Article  CAS  Google Scholar 

  • Römkens, P., Bouwman, L., Japenga, J., & Draaisma, C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution, 116, 109–121.

    Article  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sommers, L. E., & Lindsay, W. L. (1979). Effect of pH and redox on predicted heavy metal-chelate equilibria in soils. Soil Science Society of America Journal, 43, 39–47.

    Article  CAS  Google Scholar 

  • Song, J., Yong, M., & Wu Long, H. (2005). Chelate-enhanced phytoremediation of heavy metal contaminated soil. Biogeochemistry of chelating agents. Edt. B. Nowack and J.M. VanBriesen. Published by American Chemical Society, 366-382.

  • Sun, Y., Zhou, Q., An, J., Liu, W., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106–112.

    Article  CAS  Google Scholar 

  • Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62, 1454–1463.

    Article  CAS  Google Scholar 

  • Turan, M., & Esringü, A. (2007). Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environment, 53(1), 7–15.

    Article  CAS  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatobai, M., et al. (1996). Methods of soil analysis. Part 3 - chemical methods, Book series 5. Madison, Wisconsin, USA: Soil Science Society of America, Inc.

    Google Scholar 

  • von Wiren, N., Marschner, H., & Römheld, V. (1996). Roots of iron efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiology, 111, 1119–1125.

    Google Scholar 

  • Wenzel, W. W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil, 249, 83–96.

    Article  CAS  Google Scholar 

  • Younas, M., & Afzal, S. (1999). Forms of Cd, Pb, Zn and Cr in contaminated soils from Raiwind, Lohore, Pakistan. Journal of Chemical Society of Pakistan, 21, 393–399.

    CAS  Google Scholar 

  • Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution, 184, 235–242.

    Article  CAS  Google Scholar 

  • Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant and Soil, 276, 153–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was financially supported by the Pakistan Agricultural Research Council through the “Research for Agricultural Development Program.” We thank Saif-ur-Rehman and Riaz-ul-Haq for the assistance in laboratory and greenhouse work. We are grateful to Professor Dr. P.J. Gregory for the syntax improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mahmood-ul-Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthar, V., Memon, K.S. & Mahmood-ul-Hassan, M. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environ Monit Assess 186, 3957–3968 (2014). https://doi.org/10.1007/s10661-014-3671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3671-3

Keywords

Navigation