Skip to main content
Log in

Relationships for mercury and selenium in muscle and ova of gravid freshwater fish

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

At high concentrations, mercury (Hg) is toxic to vertebrates, causing neurological, behavioral, and teratological dysfunction. Selenium (Se) not only is an essential element but also has a high affinity for Hg, binding to organic methyl mercury at a molar ratio of Se/Hg of 1:1. Ratios of <1 increase risk of Hg toxicity. For gravid fish, low concentrations of Se in ova could increase potential for Hg toxicity, compromising embryonic development and fitness of fry. Mercury and selenium concentrations and ratios were investigated in the muscle and ovaries of six species from five families of fish to assess potential for risk to ecological fitness. Molar ratios of Se/Hg in muscle were typically >18 for lower trophic level species but ≤2 for piscivores. For all species combined, the concentrations of Hg in ova were significantly related to concentrations of Hg in muscle. Concentrations of Se in ova versus muscle showed a similar significant relationship that was independent of muscle Hg concentration. Mean ova molar Se/Hg ratios were high, ranging from 69 to 955 for the 6 species. However, a declining relationship between the ova Se/Hg molar ratio and the muscle concentration of Hg for all species combined suggests that development of ova and fry might be compromised for those piscivores with the highest muscle Hg concentrations because of Hg-related Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumann, P. C., & Gillespie, R. B. (1986). Selenium bioaccumulation in gonads of largemouth bass and bluegill from three power plant cooling reservoirs. Environmental Toxicology and Chemistry, 5, 695–701.

    Article  CAS  Google Scholar 

  • Beckvar, N., Dillon, T. M., & Read, L. B. (2005). Approaches for linking whole-body fish tissue residues of mercury or DDT to biological effects thresholds. Environmental Toxicology and Chemistry, 24, 2094–2105.

    Article  CAS  Google Scholar 

  • Berry, M. J., & Ralston, N. V. (2008). Mercury toxicity and the mitigating role of selenium. EcoHealth, 5, 456–459.

    Article  Google Scholar 

  • Burger, J., Gaines, K. F., Boring, S., Stephens, W. L., Snodgrass, J., & Gochfeld, M. (2001). Mercury and selenium in fish from the Savannah River: species, trophic level, and location differences. Environmental Research, Section A, 87, 108–118.

    Article  CAS  Google Scholar 

  • Cappon, C. J., & Smith, J. C. (1981). Mercury and selenium content and chemical form in fish muscle. Archive of Environmental Contamination and Toxicology, 10, 305–319.

    Article  CAS  Google Scholar 

  • Crump, K. L., & Trudeau, V. L. (2009). Mercury-induced reproductive impairment in fish. Environmental Science and Technology, 28, 895–907.

    CAS  Google Scholar 

  • Cumbie, P. M., & van Horn, S. L. (1978). Selenium accumulation associated with fish mortality and reproductive failure. Proceedings of the Annual Conference of S E Association of Fish and Wildlife Agencies, 32, 612–624.

    Google Scholar 

  • Das, S. K., Sharama, A., & Talukder, G. (1982). Effects of mercury on cellular systems in mammals—a review. Nucleus, 25, 193–230.

    CAS  Google Scholar 

  • Depew, D. C., & 13 other authors (2013). An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Canadian Journal of Fisheries and Aquatic Science, 70, 436–451.

    Article  CAS  Google Scholar 

  • Donald, D. B., & Sardella, G. D. (2010). Mercury and other metals in the muscle and ovaries of goldeye (Hiodon alosoides. Environmental Toxicology and Chemistry, 29, 373–379.

    Article  CAS  Google Scholar 

  • Donald, D. B., Wissel, B., & Anas, M. U. M. (2015). Species-specific mercury bioaccumulation in a diverse fish community. Environmental Toxicology and Chemistry, 34, 2846–2855.

    Article  CAS  Google Scholar 

  • Evans, M. S., Muir, D., Lockhart, W. L., Stern, G., Ryan, M., & Roach, P. (2005). Persistent organic pollutants and metals in the freshwater biota of the Canadian subarctic and arctic: an overview. Science of the Total Environment, 351-352–394–147.

  • Frieden, E. (1985). New perspectives on the essential elements. Journal of Chemical Education, 62, 917–923.

    Article  CAS  Google Scholar 

  • Frøslie, A., Norheim, G., & Sandlund, O. T. (1985). Levels of selenium in relation to levels of mercury in fish from Mjøsa, a freshwater lake in southeastern Norway. Bulletin of Environmental Contamination and Toxicology, 34, 572–577.

    Article  Google Scholar 

  • Gillespie, R. B., & Baumann, P. C. (1986). Effects of high tissue concentrations of selenium on reproduction by bluegills. Transactions of the American Fisheries Society, 115, 208–213.

    Article  CAS  Google Scholar 

  • Goldstein, R. M., Brigham, M. E., & Stauffer, J. C. (1996). Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish form the Red River of the north. Canadian Journal of Fisheries and Aquatic Sciences, 53, 244–252.

    Article  Google Scholar 

  • Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of methylmercury: environmental health research implications. Environmental Health Perspectives, 118, 1137–1145.

    Article  CAS  Google Scholar 

  • Hamilton, S. J., & Waddell, B. (1994). Selenium in eggs and milt of razorback sucker (Xyrauchen texanus) in Middle Green River, Utah. Archive of Environmental Contamination and Toxicology, 27, 195–201.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., Wiener, J. G., Frazier, B. E., & Rada, R. G. (1999). Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes. Environmental Science and Technology, 33, 999–1003.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., Sandheinrich, M. B., Wiener, J. G., & Rada, R. G. (2002). Effects of dietary methylmercury on reproduction of fathead minnow. Environmental Science and Technology, 36, 877–883.

    Article  CAS  Google Scholar 

  • Hishikido, N., Furuyashiki, K., Naganuma, A., Suzuki, T., & Imura, N. (1987). Maternal selenium deficiency enhances the fetolethal toxicity of methyl mercury. Toxicology and Applied Pharmacology, 88, 322–328.

    Article  Google Scholar 

  • Holm, J., Palace, V., Siwik, P., Sterling, G., Evans, R., Baron, C., Werner, J., & Wautier, K. (2005). Developmental effects of bioaccumulated selenium in eggs and larvae of two salmonid species. Environmental Toxicology and Chemistry, 24, 2373–2381.

    Article  CAS  Google Scholar 

  • Hudson, J. J., & Vandergucht, D. M. (2015). Spatial and temporal patterns in physical properties and dissolved oxygen in Lake Diefenbaker, a large reservoir on the Canadian prairies. Journal of Great Lakes Research, 41, 22–33.

    Article  CAS  Google Scholar 

  • Johnson, M. G. (1987). Trace element loadings to sediments of fourteen Ontario lakes and correlations with concentrations in fish. Canadian Journal of Fisheries and Aquatic Sciences, 44, 3–13.

    Article  CAS  Google Scholar 

  • Khan, M. A. K., & Wang, F. (2009). Mercury-selenium compounds and their toxicology significance: toward a molecular understanding of the mercury-selenium antagonism. Environmental Toxicology and Chemistry, 28, 1567–1577.

    Article  CAS  Google Scholar 

  • Latif, M. A., Bodaly, R. A., Johnston, T. A., & Fudge, R. J. P. (2001). Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum. Environmental Pollution, 111, 139–148.

    Article  CAS  Google Scholar 

  • Lemly, A. D. (1982). Response of juvenile centrarchids to sublethal concentrations of waterborne selenium. 1. Uptake, tissue distribution, and retention. Aquatic Toxicology, 2, 235–252.

    Article  CAS  Google Scholar 

  • Lemly, A. D. (1995). A protocol for aquatic hazard assessment of selenium. Ecotoxicology and Environmental Safety, 32, 280–288.

    Article  CAS  Google Scholar 

  • Lyytikäinen, M., Pätynen, J., Hyvärinen, H., Sipilä, T., & Kunnasranta, M. (2015). Mercury and selenium balance in endangered Saimaa ringed seal depend on age and sex. Environmental Science and Technology, 49, 11808–11816.

    Article  Google Scholar 

  • Mulder, P. J., Lie, E., Eggen, G. S., Ciesielski, T. M., Berg, T., Skaare, J. U., Jenssen, B. M., & Sørmo, E. G. (2012). Mercury in molar excess of selenium interferes with thyroid hormone function in free-ranging freshwater fish. Environmental Science and Technology, 46, 9027–9037.

    Article  CAS  Google Scholar 

  • Muscatello, J. R., Bennett, P. M., Himbeault, K. T., Belknap, A. M., & Janz, D. M. (2006). Larval deformities associated with selenium accumulation in northern pike (Esox lucius) exposed to metal mining effluent. Environmental Science and Technology, 40, 6506–6512.

    Article  CAS  Google Scholar 

  • North, R. L., Davies, J.-M., Doig, L. E., Lindenschmidt, K.-E., & Hudson, J. J. (2015). Lake Diefenbaker: the prairie jewel. Journal of Great Lakes Research, 41, 1–7.

    Article  Google Scholar 

  • Peterson, S. A., van Sickle, J., Herlihy, A. T., & Hughes, R. M. (2007). Mercury concentration in fish from streams and rivers throughout the western United States. Environmental Science and Technology, 41, 58–65.

    Article  CAS  Google Scholar 

  • Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 278, 112–123.

    Article  CAS  Google Scholar 

  • Ralston, N. V. C., Blackwell, J. L., & Raymond, L. J. (2007). Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biological Trace Element Research, 119, 255–268.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S., Moore, J. W., & George, G. (1985). Partitioning of mercury in the North Saskatchewan River. Chemosphere, 14, 1455–1468.

    Article  CAS  Google Scholar 

  • Sager, D. R., & Cofield, C. R. (1984). Differential accumulation of selenium among axial muscle, reproductive and liver tissues of four warm water fish species. Water Resources Bulletin, 20, 359–363.

    Article  CAS  Google Scholar 

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murry, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36, 12–18.

    Article  CAS  Google Scholar 

  • Sørmo, E. G., Ciesielski, T. M., Øverjordet, I. B., Lierhagen, S., Eggen, G. S., Berg, T., & Jenssen, B. M. (2011). Selenium moderates mercury toxicity in free-ranging freshwater fish. Environmental Science and Technology, 45, 6561–6566.

    Article  Google Scholar 

  • Speyer, M. R. (1980). Mercury and selenium concentrations in fish, sediments, and water of two northwestern Quebec lakes. Bulletin of Environmental Contamination and Toxicology, 24, 427–432.

    Article  CAS  Google Scholar 

  • Yoneda, S., & Suzuki, K. (1997). Detoxification of mercury by selenium by binding of equimolar Hg–Se complex to a specific plasma protein. Toxicology and Applied Pharmacology, 14, 274–280.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Environment Canada. I thank Jim Syrgiannis for leading the fish collection program for Lake Diefenbaker and Aaron Balfour for assistance with processing fish in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Donald.

Electronic supplementary material

ESM 1

The online versions of this article contains supplementary material which is available to authorized users. (XLSX 16.3 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donald, D.B. Relationships for mercury and selenium in muscle and ova of gravid freshwater fish. Environ Monit Assess 188, 582 (2016). https://doi.org/10.1007/s10661-016-5567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5567-x

Keywords

Navigation