Skip to main content

Advertisement

Log in

GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV > 30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI > 74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO4, being the most-sensitive water quality parameters, need to be monitored regularly and more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abassi, S. A. (1999). Water quality indices: State-of-the art. Journal of the Institution of Public Health Engineers, 1, 13–24.

    Google Scholar 

  • Adak, M. D. G., Purohit, K. M., & Datta, J. (2001). Assessment of drinking water quality of river Brahmani. Indian Journal of Environmental Protection, 8(3), 285–291.

    Google Scholar 

  • Babiker, I. S., Mohamed, M. M. A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21, 699–715.

    Article  Google Scholar 

  • Backman, B., Bodiš, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1998). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36(1–2), 55–64.

    Article  CAS  Google Scholar 

  • Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289–302.

    Article  Google Scholar 

  • Bouwer, H. (2000). Integrated water management: Emerging issues and challenges. Agricultural Water Management, 45, 217–228.

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of Geographical Information Systems (pp. 333). Oxford: Oxford University Press.

    Google Scholar 

  • CGWB (1997). Ground water resource estimation methodology—1997. Report of the ground water resource estimation committee, Central Ground Water Board (CGWB), Ministry of water resources (pp. 107). New Delhi: Government of India.

    Google Scholar 

  • CGWB (2006). Dynamic groundwater resources of India (as on March, 2004). Central Ground Water Board (CGWB), Ministry of water resources (pp. 120). New Delhi: Government of India.

    Google Scholar 

  • Chapman, D. (Ed.) (1992). Water quality assessment: A guide to the use of biota, sediments and water in environmental monitoring. London: Chapman & Hall.

    Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2001). Prediction models for landslide hazard using a fuzzy set approach. In M. Marchetti, & V. Rivas (Eds.), Geomorphology and environmental impact assessment (pp. 31–47). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Cude, C. (2001). Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of American Water Resources Association, 37, 125–137.

    Article  CAS  Google Scholar 

  • Evans, R. G., & Sadler, E. J. (2008). Methods and technologies to improve efficiency of water use. Water Resources Research, 44, W00E04. doi:10.1029/2007WR006200.

    Article  Google Scholar 

  • Foster, S. (1998). Groundwater: Assessing vulnerability and promoting protection of a threatened resource. In Proceedings of the 8th Stockholm water symposium (pp. 79–90), 10–13 August, Sweden.

  • Garg, N. K., & Hassan, Q. (2007). Alarming scarcity of water in India. Current Science, 93, 932–941.

    Google Scholar 

  • Goodchild, M. F. (1993). The state of GIS for environmental problem-solving. In M. F. Goodchild, B. O. Parks, & L. T. Steyart (Eds.), Environmental modeling with GIS (pp. 8–15). New York: Oxford University Press.

    Google Scholar 

  • GWD (2004). Groundwater assessment of udaipur district on 01.01.2004. Ground water department (GWD). Jodhpur: Government of Rajasthan.

    Google Scholar 

  • GWD (2007). Groundwater assessment of udaipur district on 01.01.2007. Ground water department (GWD). Jodhpur: Government of Rajasthan.

    Google Scholar 

  • Hueting, R. (1991). Correcting national income for environmental losses: A practical solution for a theoretical dilemma. In R. Constanza (Ed.), Ecological economics: The science and management of sustainability (pp. 194–213). New York: Columbia University Press.

    Google Scholar 

  • Humphreys, W. F. (2009). Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeology Journal, 17(1), 5–21.

    CAS  Google Scholar 

  • ILWIS (2001). Integrated land and water information system, 3.2 academic, user’s guide (pp. 428–456). The Netherlands: International Institute for Aerospace Survey and Earth Sciences (ITC).

  • Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9, 1188–1197.

    Article  CAS  Google Scholar 

  • Liou, S., Lo, S., & Wang, S. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment, 96, 35–52.

    Article  CAS  Google Scholar 

  • Lo, C. P., & Yeung, A. K. W. (2003). Concepts and techniques of geographic information systems (pp. 492). New Delhi: Prentice-Hall of India Pvt. Ltd.

    Google Scholar 

  • Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. International Journal of Geographical Information Systems, 4(4), 413–428.

    Article  Google Scholar 

  • Machiwal, D. (2009). Hydraulic and geochemical characterization and groundwater prospect of Hard-Rock Aquifer Systems in Udaipur, Rajasthan. Unpublished Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India.

  • Melloul, A. J., & Collin, M. (1998). A proposed index for aquifer water quality assessment: The case of Israel’s Sharon region. Journal of Environmental Management, 54, 131–142.

    Article  Google Scholar 

  • Mitchell, M. K., & Stapp, W. B. (1996). Field manual for water quality monitoring: An environmental education program for schools (pp. 277). Dexter: Thomson-Shore Inc.

    Google Scholar 

  • Pesce, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the impact of Córdoba city (Argentina) on Suquía river. Water Research, 34, 2915–2926.

    Article  CAS  Google Scholar 

  • Pradhan, S. K., Patnaik, D., & Rout, S. P. (2001). Water quality index for the ground water in and around a phosphatic fertilizer plant. Indian Journal of Environmental Protection, 21, 355–358.

    CAS  Google Scholar 

  • Praharaj, T., Swain, S. P., Powell, M. A., Hart, B. R., & Tripathy, S. (2002). Delineation of groundwater contamination around an ash pond: Geochemical and GIS approach. Environment International, 27, 631–638.

    Article  CAS  Google Scholar 

  • Provencher, M., & Lamontagne, M. P. (1977). Méthode de determination d un indice d appréciation de la qualité des eaux selon différentes utilisations. Québec: Ministère des Richesses Naturelles, Service de la qualité des eaux.

  • Ramesh, S., Sukumaran, N., Murugesan, A. G., & Rajan, M. P. (2010). An innovative approach of Drinking Water Quality Index—A case study from Southern Tamil Nadu, India. Ecological Indicators, 10, 857–868.

    Article  CAS  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.

    Article  CAS  Google Scholar 

  • Said, A., Stevens, D., & Selke, G. (2004). An innovative index for evaluating water quality in Streams. Environmental Management, 34, 406–414.

    Article  Google Scholar 

  • Saidi, S., Bouri, S., Dhia, H. B., & Anselme, B. (2009). A GIS-based susceptibility indexing method for irrigation and drinking water management planning: Application to Chebba-Mellouleche aquifer, Tunisia. Agricultural Water Management, 96, 1683–1690.

    Article  Google Scholar 

  • Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., et al. (2007). Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecological Indicators, 7, 315–328.

    Article  Google Scholar 

  • Schultz, M. T. (2001). A critique of EPA’s index of watershed indicators. Journal of Environmental Management, 62, 429–442.

    Article  CAS  Google Scholar 

  • Shah, T., Molden, D., Sakthivadivel, R., & Seckler, D. (2000). The global groundwater situation: Overview of opportunities and challenges. Colombo: IWMI.

    Google Scholar 

  • Shuhaimi-Othman, M., Lim, E. C., & Mushrifah, I. (2007). Water quality changes in Chini Lake, Pahang, West Malaysia. Environmental Monitoring and Assessment, 131, 279–292.

    Article  CAS  Google Scholar 

  • Soltan, M. E. (1999). Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). Environmental Monitoring and Assessment, 57, 157–168.

    Article  CAS  Google Scholar 

  • Stafford, D. B. (Ed.) (1991). Civil engineering applications of remote sensing and geographic information systems. New York: ASCE.

    Google Scholar 

  • Štambuk-Giljanović, N. (1999). Water quality evaluation by index in Dalmatia. Water Research, 33(16), 2440–3423.

    Google Scholar 

  • Steube, C., Richter, S., & Griebler, C. (2009). First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal, 17(1), 23–35.

    Google Scholar 

  • Stigter, T. Y., Ribeiro, L., & Carvalho Dill, A. M. M. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies: Two Portuguese case studies. Journal of Hydrology, 327, 578–591.

    Article  Google Scholar 

  • Vignolo, A., Pochettino, A., & Cicerone, D. (2006). Water quality assessment using remote sensing techniques: Medrano Creek, Argentina. Journal of Environmental Management, 81, 429–433.

    Article  Google Scholar 

  • WHO (2006). Guidelines for drinking-water quality: First addendum to third edition. Recommendations (Vol. 1, pp. 515). Geneva: World Health Organization (WHO).

  • Zektser, I. S. (2000). Groundwater and the environment: Applications for the global community (pp. 175). Boca Raton: Lewis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepesh Machiwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machiwal, D., Jha, M.K. & Mal, B.C. GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India. Environ Monit Assess 174, 645–663 (2011). https://doi.org/10.1007/s10661-010-1485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1485-5

Keywords

Navigation