Skip to main content

Advertisement

Log in

Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araújo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313(5792), 1396–1397. doi:10.1126/science.1131758.

    Article  Google Scholar 

  • Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., et al. (2006). Parallel declines in pollinators and insect-pollinated plants in britain and the Netherlands. Science, 313(5785), 351–354. doi:10.1126/science.1127863.

    Article  CAS  Google Scholar 

  • Brown, N., Gerard, F., & Fuller, R. (2002). Mapping of land use classes within the CORINE Land Cover Map of Great Britain. The Cartographic Journal, 39(1), 5–14.

    Google Scholar 

  • Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukacek, R., et al. (2006). Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy, 24(2), 165–181. doi:10.1016/j.eja.2005.07.006.

    Article  Google Scholar 

  • Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100) (30 pp.). Tyndall centre working paper 55, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.

  • Moora, M., Daniell, T., Kalle, H., Liira, J., Püssa, K., Roosaluste, E., et al. (2007). Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of differently managed forests. Forest Ecology and Management, 250, 64–70. doi:10.1016/j.foreco.2007.03.010.

    Article  Google Scholar 

  • Öpik, M., Moora, M., Zobel, M., Saks, Ü., Wheatley, R., Wright, F., et al. (2008). High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. The New Phytologist, 179, 867–876. doi:10.1111/j.1469-8137.2008.02515.x.

    Article  Google Scholar 

  • Parr, T. W., Sier, A. R. J., Battarbee, R. W., Mackay, A., & Burgess, J. (2003). Detecting environmental change: science and society—Perspectives on long-term research and monitoring in the 21st century. The Science of the Total Environment, 310(1–3), 1–8. doi:10.1016/S0048-9697(03)00257-2.

    Article  CAS  Google Scholar 

  • Schweiger, O., Maelfait, J. P., Wingerden, W., Hendrickx, F., Billeter, R., Speelmans, M., et al. (2005). Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. Journal of Applied Ecology, 42(6), 1129–1139. doi:10.1111/j.1365-2664.2005.01085.x.

    Article  Google Scholar 

  • Settele, J., Hammen, V., Hulme, P., Karlson, U., Klotz, S., Kotarac, M., et al. (2005). ALARM—Assessing large-scale environmental risks for biodiversity with tested methods. GAIA, 14(1), 69–72.

    Google Scholar 

  • Spangenberg, J. (2007). Integrated scenarios for assessing biodiversity risks. Sustainable Development, 15(6), 343–356. doi:10.1002/sd.320.

    Article  Google Scholar 

  • Walther, G. R., Beissner, S., & Burga, C. A. (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5), 541–548. doi:10.1658/1100-9233(2005)16[541:TITUSO]2.0.CO;2.

    Article  Google Scholar 

  • Waser, L. T., Stofer, S., Schwartz, M., Küchler, M., Ivits, E., & Scheidegger, C. (2004). Prediction of biodiversity—regression of lichen species richness on remote sensing data. Community Ecology, 5(1), 121–133. doi:10.1556/ComEc.5.2004.1.12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Hammen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammen, V.C., Biesmeijer, J.C., Bommarco, R. et al. Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environ Monit Assess 164, 337–348 (2010). https://doi.org/10.1007/s10661-009-0896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0896-7

Keywords

Navigation