Skip to main content
Log in

Seasonal differences in SO2 ground-level impacts from a power plant plume on complex terrain

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objective of this study is to describe the seasonal differences in SO2 ground-level fumigations from a power plant situated on very complex terrain in the Iberian Peninsula within the Western Mediterranean Basin (WMB). The study area extends more than 80 km around the power plant on very complex semi-arid terrain. Considering different plume-rise schemes, by experimentation and modelling this study attempts to characterise the seasonal differences in both the plume footprint 80 km around the power plant and the turbulent regime (diurnal or nocturnal) driving the main contribution to the accumulated plume footprints at different distances from the power plant within a complex terrain region. Two markedly different SO2 ground-level distributions around the power plant are presented for the typical summer and winter dispersive scenarios in the area. Simulations show that the SO2 footprint of a plume being advected more than 450 m above ground level in complex terrain is highly dependent on the prevailing meteorological conditions and on the mesoscale perturbations of the synoptic flows within the lower layers of the troposphere. The results obtained show how on complex terrain, despite seasonal meteorological differences and under stable dispersive conditions, the simulated mechanical turbulence leeward of the mountain ranges reproduces highly concentrated SO2 fumigations on the ground more than 50 km away from the power plant. Besides, under summer convective activity, plume fumigations have been successfully simulated less than 15 km from the power plant. In conclusion, this study shows how measurements from air quality networks together with information obtained from atmospheric transport and diffusion models are able to characterise different transport scenarios. This is a clear advantage for the end-users and decision-makers who manage and optimise the regional air quality networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Briggs, A. (1975). Plume rise predictions. In: Lectures on Air Pollution and Environment Impact Analysis. Boston (USA): AMS.

  • COST 710 (1998). Harmonisation of the pre-processing of meteorological data for atmospheric dispersion models. COST Action 710—Final report. European Commission. Directorate-General Science, Research and Development. EUR 18195 EN.

  • Fast, J. D. (1995). Mesoscale modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique. Journal of Applied Meteorology, 34, 2762–2782.

    Article  Google Scholar 

  • Fast, J. D., & Darby, L. S. (2004). An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using doppler lidar measurements during VTMX 2000. Journal of Applied Meteorology, 43, 420–436.

    Article  Google Scholar 

  • Fast, J. D., Lance O’Steen, B., & Addis, R. P. (1995). Advanced atmospheric modeling for emergency response. Journal of Applied Meteorology, 34, 626–649.

    Article  Google Scholar 

  • Grell, G. A., Dudhia, J., & Stauffer, D. R. (1995). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR/TN-398 + STR, Nation l Center for Atmospheric Research, Boulder, CO (USA), 138.

  • McNider, R. T., Moran, M. D., & Pielke, R. A. (1998). Influence of diurnal and inertial boundary-layer oscillations on long-range dispersion. Atmospheric Environment, 22(11), 2445–2462.

    Google Scholar 

  • Millán, M. M. (1987). The regional transport of tall stack plumes. In S. Sandroni (Ed.), Regional and long-range transport of air pollution (pp. 249–280). Amsterdam, The Netherlands: Elsevier Science Publishers.

    Google Scholar 

  • Millán, M. M., Gallant, A. J., & Turner, H. E. (1976). The application of correlation spectroscopy to the study of dispersion from tall stacks. Atmospheric Environment, 10, 499–511.

    Article  Google Scholar 

  • Millán, M., Alonso, L., & Legarreta, J. A. (1986). Dispersión de contaminantes en la atmósfera: Parte I. (Atmospheric pollutants dispersion. Part I). In Spanish. Energía, julio-agosto, Madrid (Spain), 89–101.

  • Millán, M., Navazo, M., & Ezcurra, A. (1987). Meso-Meteorological analysis of air pollution cycles in Spain. In G. Angeletti, & G. Restelli (Eds.), Physico-chemical behaviour of atmospheric pollutants (pp. 614–626). Dordrecht, Holland: D. Reidel Publishing Co. For the Commission of the European Communities.

  • Millán, M. M., Artiñano, B., Alonso, L., Castro, M., Fernandez-Patier, R., & Goberna, J. (1992). Meso-Meteorological Cycles of Air Pollution in the Iberian Penisula, (MECAPIP) (Air Pollution Research Report 44, EUR No. 14834). European Commision DG XII/E-1, Rue de la Loi, 200, B-140, Brussels.

  • Millán, M. M., Sanz, M. J., Calatayud, V., Palau, J. L., Diéguez, J. J., Pérez-Landa, G., et al. (2004). La calidad del aire en las comarcas de Els Ports-Maestrat (Air quality on the Els Ports-Maestrat areas). Edited in Spanish by Generalitat Valenciana (Conselleria de Territori i habitatge) and Fundación CEAM, 408, ISBN: 84–921259–4–2, Valencia (Spain).

  • Palau, J. L. (2003). Dispersión atmosférica de las emisiones de una chimenea alta en terreno complejo (Atmospheric dispersion of a tall-stack plume on complex terrain). PhD Thesis (in Spanish). University of Valencia (Spain). Edited by Fundación CEAM, 366, ISBN: 84-688-4440-3, Valencia (Spain).

  • Palau, J. L., Mantilla, E., & Millán, M. M. (2001). Estimation of the dispersion of an elevated plume on complex terrain under stable-to-neutral conditions. A changing atmosphere: 8th European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants. 17–20 September. Torino (Italy).

  • Palau, J. L., Monter, C., & Millán, M. M. (2004b). Influencia de la Baja Térmica Ibérica en la dinámica del penacho de una Chimenea Alta (Influence of the Iberian Thermal Low on the dynamics of a plume emitted from a tall chimney). In Spanish. PROMA-Feria del Medio Ambiente: IX Congreso de Ingeniería Ambiental, 521–530, Bilbao (Spain).

  • Palau, J. L., Pérez-Landa, G., Diéguez, J. J., Monter, C., & Millán, M. M. (2005). The importance of meteorological scales to forecast air pollution scenarios on coastal complex terrain. Atmos. Chem. Phys., 5, 2771–2785.

    Article  CAS  Google Scholar 

  • Palau, J. L., Pérez-Landa, G., Meliá, J., Segarra, D., & Millán, M. M. (2004a). A study of the dispersion of a power plant on complex terrain under winter conditions in the Iberian Peninsula. Fourth Annual Meeting of the European Meteorological Society. EMS Annual Meeting Abstracts, Vol. I, 00389. Nice (France).

  • Palau, J. L., Pérez-Landa, G., Meliá, J., Segarra, D., & Millán, M. M. (2006). A study of dispersion in complex terrain under winter conditions using high-resolution mesoscale and Lagrangian particle models. Atmos. Chem. Phys., 6, 1105–1134.

    CAS  Google Scholar 

  • Perez-Landa, G., Palau, J. L., Mantilla, E., & Millán, M. M. (2002). A study of the dispersion of a power plant on complex terrain under summer conditions. 15th Conference on Boundary Layer and Turbulence. AMS, 346–349. Wageningen.

  • Pooler Jr., F., & Niemeyer, L. E. (1971). Dispersion from tall stacks: An Evaluation. In H. M. Englund, & W. T. Beery (Eds.), Proceedings 2nd International Clean Air Congress. New York: Academic Press.

    Google Scholar 

  • Salvador, R., Calbó, J., & Millán, M. M. (1999). Horizontal grid size selection and its influence on mesoscale model simulation. Journal of Applied Meteorology, 38(9), 1311–1329.

    Article  Google Scholar 

  • Shiermeier, F. S. (1971). Study of effluents from large power plants. Presented at the American Industrial Hygiene Assoc. Conf. May. 24–28, Toronto, Canada.

  • Stauffer, D. R., & Seaman, N. L. (1994). Multiscale four-dimensional data assimilation. Journal of Applied Meteorology, 33, 416–434.

    Article  Google Scholar 

  • Stohl, A. and Seibert, P. (2001) The FLEXPART particle dispersion model. User Guide. http://www.forst.uni-muenchen.de/EXT/LST/METEO/stohl/.

  • Stohl, A., & Thomson, D. J. (1999). A density correction for lagrangian particle dispersion models. Boundary-Layer Meteorology, 90, 155–167.

    Article  Google Scholar 

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461–2474.

    CAS  Google Scholar 

  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194.

    Google Scholar 

  • Zaremba, L. L., & Carroll, J. J. (1999). Summer wind flow regimes over the Sacramento valley. Journal of Applied Meteorology, 38, 1463–1473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Palau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palau, J.L., Meliá, J., Segarra, D. et al. Seasonal differences in SO2 ground-level impacts from a power plant plume on complex terrain. Environ Monit Assess 149, 445–455 (2009). https://doi.org/10.1007/s10661-008-0221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0221-x

Keywords

Navigation