Skip to main content
Log in

The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4–43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barrat, J. A., & Nesbitt, R. W. (1996). Geochemistry of the Tertiary volcanism of Northern Ireland. Chemical Geology, 129, 15–38.

    Article  CAS  Google Scholar 

  • Barsby, A., McKinley, J. M., Ofterdinger, U., Young, M., Cave, M. R., & Wragg, J. (2012). Bioaccessibility of trace elements in soils in Northern Ireland. Science of the Total Environment, 433, 398–417.

    Article  CAS  Google Scholar 

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409, 267–277.

    Article  CAS  Google Scholar 

  • Cave, M. R., Milodowski, A. E., & Friel, E. N. (2004). Evaluation of a method for identification of host physico-chemical phases for trace metals and measurement of their solid-phase partitioning in soil samples by nitric acid extraction and chemometric mixture resolution. Geochemistry: Exploration, Environment, Analysis, 4, 71–86.

    Article  CAS  Google Scholar 

  • Cave, M. R., Wragg, J., Denys, S., Jondreville, C., & Feidt, C. (2011). Oral Bioavailability. In F. A. Swartjes (Ed.), Dealing with contaminated sites (pp. 287–324). Netherlands: Springer.

    Chapter  Google Scholar 

  • Chartered Institute of Environmental Health (CIEH). (2009). Professional practice note: Reviewing human health risk assessment reports invoking contaminant oral bioavailability measurements or estimates. Chartered Institute of Environmental Health (CIEH). http://www.cieh.org/library/Policy/Environmental_protection/Contaminated_land/Standing_Conference_on_Contaminated_Land/CIEH_PPN_Bioavailability_Final_June09.pdf. Accessed December 13, 2012.

  • Cicchella, D., De Vivo, B., & Lima, A. (2005). Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli (Italy). Geochemistry: Exploration, Environment, Analysis, 5, 29–40.

    Article  CAS  Google Scholar 

  • Costa, M., & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 36, 155–163.

    Article  CAS  Google Scholar 

  • Costa, C., Reis, A. P., Ferreira da Silva, E., Rocha, F., Patinha, C., Dias, A. C., et al. (2011). Assessing the control exerted by soil mineralogy in the fixation of potentially harmful elements in the urban soils of Lisbon, Portugal. Environmental Earth Sciences, 65(4), 1133–1145.

    Article  Google Scholar 

  • Cruickshank, J. G. (1997). Soil and environment: Northern Ireland. Belfast: Agricultural and Environmental Science Division, DANI and The Agricultural and Environmental Science Department, The Queen’s University of Belfast.

    Google Scholar 

  • Dao, L., Morrison, L., & Zhang, C. (2012). Bonfires as a potential source of metal pollutants in urban soils, Galway, Ireland. Applied Geochemistry, 27, 930–935.

    Article  CAS  Google Scholar 

  • Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42, 35–56.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46, 6252–6260.

    Article  CAS  Google Scholar 

  • Denys, S., Tack, K., Caboche, J., & Delalain, P. (2009). Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere, 74, 711–716.

    Article  CAS  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Environment Agency (EA). (2009a). Updated technical background to the CLEA model. Bristol: Environment Agency (EA).

    Google Scholar 

  • Environment Agency (EA). (2009b). Soil guideline values for nickel in soil. Bristol: Environment Agency (EA).

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Geological Survey of Northern Ireland (GSNI). (1991). Quaternary geological map of Northern Ireland 1:250 000. Nottingham: British Geological Survey.

    Google Scholar 

  • Geological Survey of Northern Ireland (GSNI). (1997). Northern Ireland. Solid geology 1:250 000 (2nd ed.). Nottingham: British Geological Survey.

    Google Scholar 

  • Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science and Technology, 32, 358–362.

    Article  CAS  Google Scholar 

  • Hansen, J. B., Oomen, A. G., Edelgaard, I., & Grøn, C. (2007). Oral bioaccessibility and leaching: Tests for soil risk assessment. Engineering in Life Sciences, 7, 170–176.

    Article  CAS  Google Scholar 

  • Johnson, C. C., Ander, E. L., Cave, M. R., & Palumbo-Roe, B. (2012). Normal background concentrations (NBCs) of contaminants in English soils: Final project report. Nottingham: British Geological Survey.

    Google Scholar 

  • Jordan, C., & Higgins, A. (2009). The AFBI soil classification map of Northern Ireland at 1:50,000 scale. Based on information from Cruickshank, J. G. (Ed.) (1997). Soil and Environment: Northern Ireland. Agricultural and Environmental Science Department, Queen’s University Belfast. Belfast: Agri-Food and Biosciences Institute.

  • Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.

    Article  CAS  Google Scholar 

  • Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health Part, 42, 1241–1250.

    Article  CAS  Google Scholar 

  • Lyle, P. (1979). A petrological and geochemical study of the tertiary basaltic rocks of Northeast Ireland. Journal of Earth Science, 2, 137–152.

    Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Megremi, I. (2010). Distribution and bioavailability of Cr in central Euboea, Greece. Central European Journal of Geosciences, 2, 103–123.

    Article  Google Scholar 

  • Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., et al. (2010). Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44, 2667–2674.

    Article  CAS  Google Scholar 

  • Mitchell, W. I. (2004). The geology of Northern Ireland our natural foundation. Belfast: Geological Survey of Northern Ireland.

    Google Scholar 

  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2012). Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma, 173–174, 173–183.

    Article  Google Scholar 

  • Nathanail, P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A., Ogden, R., et al. (2009). The LQM/CIEH generic assessment criteria for human health risk assessment. Nottingham: Land Quality Press.

    Google Scholar 

  • Nesbitt, H. W., & Wilson, R. E. (1992). Recent chemical weathering of basalts. American Journal of Science, 292, 740–778.

    Article  CAS  Google Scholar 

  • Nico, P. S., Ruby, M. V., Lowney, Y. W., & Holm, S. E. (2006). Chemical speciation and bioaccessibility of arsenic and chromium in chromated copper arsenate-treated wood and soils. Environmental Science and Technology, 40, 402–408.

    Article  CAS  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2011). The application of in vitro gastrointestinal extraction to assess oral bioaccessibility of potentially toxic elements from an urban recreational site. Applied Geochemistry, 26, 789–796.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44, 281–287.

    Article  CAS  Google Scholar 

  • Palmer, S., Ofterdinger, U., McKinley, J., Cox, S. F., & Barsby, A. (2013). Spatial analysis approaches to investigate the bioaccessibililty of Nickel, Vanadium and Zinc in Northern Ireland, UK soils. Environmental Geochemistry and Health. doi:10.1007/s10653-013-9540-0.

  • Palumbo-Roe, B., & Klinck, B. (2007). Bioaccessibility of arsenic in mine waste-contaminated soils: A case study from an abandoned arsenic mine in SW England (UK). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 42, 1251–1261.

    Article  CAS  Google Scholar 

  • Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683–691.

    Article  Google Scholar 

  • Pebesma, E. J., & Wesseling, C. G. (1998). Gstat, a program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24, 17–31.

    Article  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Cuny, D., Richard, A., et al. (2012). Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: A statistical modeling approach. Environmental Pollution, 160, 130–138.

    Article  Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Ajmone Marsan, F. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Quantin, C., Ettler, V., Garnier, J., & Sebek, O. (2008). Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Surface Geosciences (Pedology), 340, 872–882.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Pereira, M. E., Duarte, A. C., Ajmone-Marsan, F., Davidson, C. M., Grcman, H., et al. (2006). Mercury in urban soils: A comparison of local spatial variability in six European cities. Science of the Total Environment, 368, 926–936.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Critical review advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). Geochemical Atlas of Europe. Part 1—Background information, methodology, and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Smyth, D. (2007). Methods used in the Tellus Geochemical Mapping of Northern Ireland. Report OR/07/022. Nottingham: British Geological Survey.

    Google Scholar 

  • Stewart, M. A., Jardine, P. M., Brandt, C. C., Barnett, M. O., Fendorf, S. E., McKay, L. D., et al. (2003). Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr(III) and Cr(VI) in soil. Soil and Sediment Contamination, 12, 1–21.

    Article  CAS  Google Scholar 

  • Wedephol, K. H. (1978). Handbook of geochemistry. Berlin: Spring.

    Google Scholar 

  • Wragg, J. (2005). A study of the relationship between Arsenic bioaccessibility and its solid phase distribution in Wellingborough soils. PhD Thesis, University of Nottingham.

  • Wragg, J., & Cave, M. (2012). Assessment of a geochemical extraction procedure to determine the solid phase fractionation and bioaccessibility of potentially harmful elements in soils: A case study using the NIST 2710 reference soil. Analytica Chimica Acta, 722, 43–54.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030.

    CAS  Google Scholar 

  • Zhang, C., Wu, L., Luo, Y., Zhang, H., & Christie, P. (2008). Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties. Environmental Pollution, 151, 470–476.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Geochemistry data were provided by the Geological Survey of Northern Ireland as part of the Tellus Project, which was funded by the Department of Enterprise, Trade and Investment of Northern Ireland and by the EU ‘Building Sustainable Prosperity’ programme of the Department of Agriculture and Rural Development. The authors would also like to acknowledge the valuable technical assistance provided by Alex Donald (GSNI) and Mark Russell (QUB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhan F. Cox.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S.F., Chelliah, M.C.M., McKinley, J.M. et al. The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland. Environ Geochem Health 35, 553–567 (2013). https://doi.org/10.1007/s10653-013-9539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9539-6

Keywords

Navigation