Skip to main content

Advertisement

Log in

An implicit wetting–drying algorithm for the discontinuous Galerkin method: application to the Tonle Sap, Mekong River Basin

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The accurate simulation of wetting–drying processes in floodplains and coastal zones is a challenge for hydrodynamic modelling, especially for long time simulations. Indeed, dedicated numerical procedures are generally time-consuming, instabilities can occur at the wet/dry front, rapid transition of wet/dry interface and mass conservation are not always ensured. We present the extension of an existing wetting–drying algorithm in two space dimensions and its application to a real case. The wetting–drying algorithm is implemented in Second-generation Louvain-la-Neuve Ice-ocean Model (www.slim-ocean.be), a discontinuous Galerkin finite element model solving the shallow water equations in a fully implicit way. This algorithm consists in applying a threshold value of fluid depth for a thin layer and a blending parameter in order to guarantee positive values of the water depth, while preserving local mass conservation and the well balanced property at wet/dry interfaces. The technique is first validated against standard analytical test cases (Balzano 1, Balzano 3 and Thacker test cases) and is subsquently applied in a realistic domain, the Tonle Sap Lake in the Mekong River Basin, where the water level can vary by about 10 m between the dry and the wet season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Burt TP (1996) The hydrological role of floodplains within the drainage basin system. In: Haycock NE, Burt TP, Goulding KWT, Piney G (eds) Buffer zones: their processes and potential in water protection. Haycock Associated Limited, Otley, pp 21–32

    Google Scholar 

  2. Craig JF, Halls AS, Barr JJF, Bean CW (2004) The Bangladesh floodplain fisheries. Fish Res 66(2–3):271–286

    Google Scholar 

  3. Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. River Res Appl 15(1–3):125–139

    Google Scholar 

  4. Wheater H, Evans E (2009) Land use, water management and future flood risk. Land Use Policy 26:251–264

    Google Scholar 

  5. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers Res Manag 16(5):457–467

    Google Scholar 

  6. Warner JC, Defne Z, Haas K, Arango HG (2013) A wetting and drying scheme for ROMS. Comput Geosci 58:54–61

    Google Scholar 

  7. Vater S, Beisiegel N, Behrens J (2015) A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: one-dimensional case. Adv Water Resour 85:1–13

    Google Scholar 

  8. Medeiros SC, Hagen SC (2012) Review of wetting and drying algorithms for numerical tidal flow models. Int J Numer Methods Fluids 71(4):473–487

    Google Scholar 

  9. D’Alpaos L, Defina A (2007) Mathematical modeling of tidal hydrodynamics in shallow lagoons: a review of open issues and applications to the Venice lagoon. Comput Geosci 33(4):476–496

    Google Scholar 

  10. Kärnä T, De Brye B, Gourgue O, Lambrechts J, Comblen R, Legat V, Deleersnijder E (2011) A fully implicit wetting–drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Comput Methods Appl Mech Eng 200(5–8):509–524

    Google Scholar 

  11. Gourgue O, Comblen R, Lambrechts J, Kärnä T, Legat V, Deleersnijder E (2009) A flux-limiting wetting–drying method for finite-element shallow-water models, with application to the Scheldt Estuary. Adv Water Resour 32(12):1726–1739

    Google Scholar 

  12. Dresback KM, Kolar RL, Dietrich JC (2002) Impact of the form of the momentum equation on shallow water models based on the generalized wave continuity equation. Dev Water Sci 47:1573–1580

    Google Scholar 

  13. Casulli V (2009) A high resolution wetting and drying algorithm for free—surface hydrodynamics. Int J Numer Methods Fluids 60(4):391–408

    Google Scholar 

  14. Bradford SF, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitrary topography. J Hydraul Eng 128(3):289–298

    Google Scholar 

  15. Begnudelli L, Sanders BF (2006) Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. J Hydraul Eng 132(4):371–384

    Google Scholar 

  16. Martins R, Leandro J, Djordjevic S (2016) Wetting and drying numerical treatments for the Roe Riemann scheme. J Hydraul Res 56(2):256–267

    Google Scholar 

  17. Heniche M, Secretan Y, Boudreau P, Leclerc M (2000) A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Adv Water Resour 23(4):359–372

    Google Scholar 

  18. Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J Hydraul Eng 124(7):678–686

    Google Scholar 

  19. Candy AS (2017) An implicit wetting and drying approach for non-hydrostatic baroclinic flows in high aspect ratio domains. Adv Water Resour 102:188–205

    Google Scholar 

  20. Chau KW, Jiang YW (2002) Three-dimensional pollutant transport model for the Pearl River Estuary. Water Res 36(8):2029–2039

    Google Scholar 

  21. Gourgue O, Deleersnijder E, White L (2007) Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika. Estuar Coast Shelf Sci 74(4):628–640

    Google Scholar 

  22. Lambrechts J, Humphrey C, McKinna L, Gourge O, Fabricius KE, Mehta AJ, Lewis S, Wolanski E (2010) Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuar Coast Shelf Sci 89(2):154–162

    Google Scholar 

  23. Gourgue O, Baeyens W, Chen MS, de Brauwere A, de Brye B, Deleersnijder E, Elskens M, Legat V (2013) A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. J Mar Syst 128:27–39

    Google Scholar 

  24. De Brye B, Schellen S, Sassi M, Vermeulen B, Kärnä T, Deleersnijder E, Hoitink T (2011) Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dyn 61(8):1107–1120

    Google Scholar 

  25. Van Pham C, de Brye B, Deleersnijder E, Hoitink AJF, Sassi M, Spinewine B, Hidayat H, Soares-Frazão S (2016) Simulations of the flow in the Mahakam river-lake-delta system, Indonesia. Environ Fluid Mech 16(3):603–633

    Google Scholar 

  26. Vallaeys V, Karna T, Delandmeter P, Lambrechts J, Baptista AM, Deleersnijder E, Hanert E (2018) Discontinuous Galerkin modeling of the Columbia River’s coupled estuary-plume dynamics. Ocean Model 124:111–124

    Google Scholar 

  27. Vincent D, Karatekin O, Vallaeys V, Hayes AG, Mastrogiuseppe M, Notarnicola C, Dehant V, Deleersnijder E (2016) Numerical study of tides in Ontario Lacus, a hydrocarbon lake on the surface of the Saturnian moon Titan. Ocean Dyn 66(4):461–482

    Google Scholar 

  28. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164

    Google Scholar 

  29. Balzano A (1998) Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coast Eng 34(1–2):83–107

    Google Scholar 

  30. Yuan D, Lin B, Falconer R (2008) Simulating moving boundary using a linked groundwater and surface water flow model. J Hydrol 349(3–4):524–535

    Google Scholar 

  31. Nielsen C, Apelt C (2003) Parameters affecting the performance of wetting and drying in a two-dimensional finite element long wave hydrodynamic model. J Hydraul Eng 129(8):628–636

    Google Scholar 

  32. Kesserwani G, Liang Q (2012) Dynamically adaptive grid based discontinuous Galerkin shallow water model. Adv Water Resour 37:23–39

    Google Scholar 

  33. Thacker WC (1981) Some exact solutions to the nonlinear shallow-water wave equations. J Fluid Mech 107:499–508

    Google Scholar 

  34. Kummu M, Tes S, Yin S, Adamson P, Jozsa J, Koponen J, Richey J, Sarkkula J (2014) Water balance analysis for the Tonle Sap Lake-floodplain system. Hydrol Process 28(4):1722–1733

    Google Scholar 

  35. Ji X, Li Y, Luo X, He D (2018) Changes in the Lake Area of Tonle Sap: possible linkage to runoff alterations in the lancang river? Remote Sens 10(6):866–886

    Google Scholar 

  36. Campbell IC, Say S, Beardall J (2009) Tonle Sap Lake, the heart of the lower Mekong. In: Campbell IC (ed) The Mekong, 1st edn. Academic Press, New York, pp 251–272

    Google Scholar 

  37. Siev S, Paringit EC, Yoshimura C, Hul S (2016) Seasonal changes in the inundation area and water volume of the Tonle Sap River and its floodplain. Hydrology 3(4):33–45

    Google Scholar 

  38. Penny D (2006) The Holocene history and development of the Tonle Sap, Cambodia. Quat Sci Rev 25(3–4):310–322

    Google Scholar 

  39. Berg M, Stengel C, Trang PTK, Viet PH, Sampson ML, Leng M, Samreth S, Fredericks D (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci Total Environ 372(2–3):413–425

    Google Scholar 

  40. Thanh VQ, Reyns J, Wackerman C, Eidam EF, Roelvink D (2017) Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River. Cont Shelf Res 147:213–230

    Google Scholar 

  41. Royal Haskoning, Deltares, UNESCO - IHE (2010) The flood management and mitigation programme, component 2: structural measures and flood proofing in the lower mekong basin, Final Report, Volume 6C “integrated flood risk management plan for the West Bassac area in Cambodia”. Mekong River Comission, Phnom Phenh

  42. Hai PT, Masumoto T, Shimizu K (2008) Development of a two-dimensional finite element model for inundation processes in the Tonle Sap and its environs. Hydrol Process 22(9):1329–1336

    Google Scholar 

  43. Chau KW, Jiang YW (2004) A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary. Int J Environ Pollut 21(2):188–198

    Google Scholar 

  44. Remacle JF, Lambrechts J (2018) Fast and robust mesh generation on the sphere—application to coastal domains. Comput Aided Des 103:14–23

    Google Scholar 

  45. Manh NV, Dung NV, Hung NN, Merz B, Apel H (2014) Large-scale suspended sediment transport and sediment deposition in the Mekong Delta. Hydrol Earth Syst Sci 18(8):3033–3054

    Google Scholar 

  46. Mekong River Commission (2015) Annual Mekong Flood Report 2011, Mekong River Commission, Phnom Phenh

  47. Kummu M, Penny D, Sarkkula J, Koponen J (2008) Sediment: curse or blessing for Tonle Sap Lake? AMBIO: J Hum Environ 37(3):158–164

    Google Scholar 

  48. Asian Development Bank (2009) Cambodia: preparing the water resources management (sector) project. Water Resources Management Sector Development Project Technical Annex on Integrated Water Resources Management (IWRM). Ministry of Water Resources and Meteorology, Royal Government of Cambodia and Asian Development Bank, Phnom Penh

  49. WUP-JICA (2004) Vol. II: supporting report, Paper IV: development of hydro-hydraulic model for the Cambodian floodplains. Final report. JICA, Japan

  50. Fujii H, Garsdal H, Ward P, Ishii M, Morishita K, Boivin T (2003) Hydrological roles of the Cambodian floodplain of the Mekong River. Int J River Basin Manag 1(3):253–266

    Google Scholar 

  51. Lu X, Kummu M, Oeurng C (2014) Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia. Earth Surf Process Landf 39(14):1855–1865

    Google Scholar 

  52. May R, Jinno K, Tsutsumi A (2011) Influence of flooding on groundwater flow in central Cambodia. Environ Earth Sci 63(1):151–161

    Google Scholar 

  53. Quezada M, Tamburrino A, Niño Y (2018) Numerical simulation of scour around circular piles due to unsteady currents and oscillatory flows. Eng Appl Comput Fluid Mech 12(1):354–374

    Google Scholar 

  54. Wu CL, Chau KW (2006) Mathematical model of water quality rehabilitation with rainwater utilization: a case study at Haigang. Int J Environ Pollut 28(3–4):534–545

    Google Scholar 

Download references

Acknowledgements

The PhD fellowship of Hoang-Anh Le is provided by the Université catholique de Louvain, Belgium. This research has been conducted under the framework of CARE - Rescif, Vietnam’s initiative with Grant number Tc-TTC-2017-08. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. E. Deleersnijder and S. Soares-Frazão are honorary research associates with F.R.S.-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Anh Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, HA., Lambrechts, J., Ortleb, S. et al. An implicit wetting–drying algorithm for the discontinuous Galerkin method: application to the Tonle Sap, Mekong River Basin. Environ Fluid Mech 20, 923–951 (2020). https://doi.org/10.1007/s10652-019-09732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-019-09732-7

Keywords

Navigation