Skip to main content
Log in

Simulations of the flow in the Mahakam river–lake–delta system, Indonesia

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Large rivers often present a river–lakedelta system, with a wide range of temporal and spatial scales of the flow due to the combined effects of human activities and various natural factors, e.g., river discharge, tides, climatic variability, droughts, floods. Numerical models that allow for simulating the flow in these river–lakedelta systems are essential to study them and predict their evolution under the impact of various forcings. This is because they provide information that cannot be easily measured with sufficient temporal and spatial detail. In this study, we combine one-dimensional sectional-averaged (1D) and two-dimensional depth-averaged (2D) models, in the framework of the finite element model SLIM, to simulate the flow in the Mahakam river–lakedelta system (Indonesia). The 1D model representing the Mahakam River and four tributaries is coupled to the 2D unstructured mesh model implemented on the Mahakam Delta, the adjacent Makassar Strait, and three lakes in the central part of the river catchment. Using observations of water elevation at five stations, the bottom friction for river and tributaries, lakes, delta, and adjacent coastal zone is calibrated. Next, the model is validated using another period of observations of water elevation, flow velocity, and water discharge at various stations. Several criteria are implemented to assess the quality of the simulations, and a good agreement between simulations and observations is achieved in both calibration and validation stages. Different aspects of the flow, i.e., the division of water at two bifurcations in the delta, the effects of the lakes on the flow in the lower part of the system, the area of tidal propagation, are also quantified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Peters DL, Buttle JM (2010) The effects of flow regulation and climatic variability on obstructed drainage and reverse flow contribution in a Northern river–lake–Delta complex, Mackenzie basin headwaters. River Res Appl 26:1065–1089

    Article  Google Scholar 

  2. de Brye B, Schellen S, Sassi M, Vermeulen B, Karna T, Deleersijder E, Hoitink T (2011) Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dyn 61:1107–1120

    Article  Google Scholar 

  3. de Brye B, de Brauwere A, Gourgue O, Kärnä T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coast Eng 57:850–863

    Article  Google Scholar 

  4. Wu W, Li Y (1992) One- and two-dimensional nesting mathematical model for river flow and sedimentation. The Fifth International Symposium on River Sedimentation, Karlsruhe, pp 547–554

  5. Zhang SQ (1999) One-D and two-D combined model for estuary sedimentation. Int J Sedim Res 14(1):37–45

    Google Scholar 

  6. Martini P, Carniello L, Avanzi C (2004) Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta river, Veneto (Italy). Nat Hazards Earth Syst Sci 4:165–181

    Article  Google Scholar 

  7. Cook A, Merwade V (2009) Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J Hydrol 377:131–142

    Article  Google Scholar 

  8. Pietrzak J, Deleersnijder E, Schröter J (2005) Special issue: the second international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows Delft, The Netherlands, September 23–25, 2003. Ocean Model 10(1–2):1–3

    Article  Google Scholar 

  9. Deleersnijder E, Legat V, Lermusiaux PFJ (2010) Multi-scale modeling of coastal, shelf and global ocean dynamic. Ocean Dyn 60:1357–1359

    Article  Google Scholar 

  10. Lambrechts J, Hanert E, Deleersnijder E, Bernard P-E, Legat V, Remacle J-F, Wolanski E (2008) A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuar Coast Shelf Sci 79:143–151

    Article  Google Scholar 

  11. Allen GP, Chambers JLC (1998) Sedimentation in the modern and Miocene Mahakam delta. Indonesian Petroleum Association, Jakarta

  12. Hidayat H, Hoekman DH, Vissers MAM, Hoitink AJF (2012) Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol Earth Syst Sci 16:1805–1816

    Article  Google Scholar 

  13. Roberts HH, Sydow J (2003) Later quaternary stratigraphy and sedimentology of the offshore Mahakam delta, East Kalimantan (Indonesia). Trop Deltas Southeast Asia Sedimentol Stratigr Pet Geol 76:125–145

    Article  Google Scholar 

  14. Storms JEA, Hoogendoorn RM, Dam RAC, Hoitink AJF, Koonenberg SB (2005) Late-Holocene evolution of the Mahakam delta, East Kalimantan, Indonesia. Sed Geol 180:149–166

    Article  Google Scholar 

  15. Hall R, Cloke IR, Nur’aini S (2009) The North Makassar Straits: what lies beneath? Pet Geosci 15:147–158

    Article  Google Scholar 

  16. Susanto RD, Ffield A, Gordon AL, Adi TR (2012) Variability of Indonesian throughflow within Makassar Strait, 2004-2009. J Geophys Res 117:C09013. doi:10.1029/2012JC008096

    Article  Google Scholar 

  17. Adcroft A, Marshall D (1998) How slippery are piecewise-constant coastlines in numerical ocean models? Tellus 50A(1):95–108

    Article  Google Scholar 

  18. Edmonds DA, Slingerland RL (2010) Significant effect of sediment cohesive on delta morphology. Nat Geosci 3:105–109

    Article  Google Scholar 

  19. Budhiman S, Salama SM, Vekerdy Z, Verhoef W (2012) Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion. ISPRS J Photogramm Remote Sens 68:157–169

    Article  Google Scholar 

  20. Budiyanto F, Lestari (2013) Study of metal contaminant level in the Mahakam Delta: sediment and dissolved metal perpectives. J Coast Dev 16(2):147–157

    Google Scholar 

  21. Salahuddin Lambiase JJ (2013) Sediment dynamics and depositional systems of the Mahakam Delta, Indonesia: ongoing delta abandonment on a tide-dominated coast. J Sediment Res 83:503–521

    Article  Google Scholar 

  22. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  23. Darby SE, Thorne CR (1996) Predicting stage-discharge curves in channels with bank vegetation. J Hydraul Eng 122(10):583–586

    Article  Google Scholar 

  24. Kärnä T, de Brye B, Gourgue O, Lambrechts J, Comblen R, Legat V, Deleersnijder E (2011) A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Comput Methods Appl Mech Eng 200:509–524

    Article  Google Scholar 

  25. Comblen R, Lambrechts J, Remacle J-F, Legat V (2010) Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations. Int J Numer Methods Fluids 63:701–724

    Google Scholar 

  26. Toro E (1997) Riemann solvers and numerical methods for fluid dynamics, a practical introduction. Springer, Berlin

    Book  Google Scholar 

  27. Sherwin S, Formaggia L, Peiro J (2003) Computational modelling of 1D blood flow with variable mechanical properties and its applications to the simulation of wave propagation in the human arterial system. J Numer Methods Fluids 43:673–700

    Article  Google Scholar 

  28. Sassi M, Hoitink AJF, de Brye B, Vermeulen B, Deleersnijder E (2011) Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn 61:2211–2228

    Article  Google Scholar 

  29. Lambrechts J, Comblen R, Legat V, Geuzaine C, Remacle J-F (2008) Multiscale mesh generation on the phere. Ocean Dyn 58:461–473

    Article  Google Scholar 

  30. Geuzaine C, Remacle J-F (2009) GMSH: a finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  Google Scholar 

  31. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46

    Article  Google Scholar 

  32. Legrand S, Deleersnijder E, Delhez EJM, Legat V (2007) Unstructured anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean. Cont Shelf Res 27:1344–1356

    Article  Google Scholar 

  33. Mandang I, Yanagi T (2008) Tide and tidal current in the Mahakam Estuary, East Kalimantan, Indonesia. Coast Mar Sci 32(1):1–8

    Google Scholar 

  34. Egbert GD, Bennet AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

    Article  Google Scholar 

  35. Haidvogel DB, McWilliams JC, Gent PR (1991) Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J Phys Oceanogr 22:882–902

    Article  Google Scholar 

  36. Legates DR, McCabe JGJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  37. Sassi M, Hoitink AJF, Vermeulen B, Hidayat H (2013) Sediment discharge division at two tidally influenced river bifurcations. Water Resour Res 49(4):2119–2134

    Article  Google Scholar 

  38. Kleinhans MG, Jagers HRA, Mosselman E, Sloff CJ (2008) Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models. Water Resour Res 44:W08454. doi:10.1029/2007WR005912

    Google Scholar 

  39. Shih SF, Rahi GS (1982) Seasonal variation of Manning’s roughness coefficient in a subtropical marsh. Trans ASAF 25(1):116–119

    Article  Google Scholar 

  40. Bao W-M, Zhang Z-Q, Qu S-M (2009) Dynamic Correction of Roughness in the Hydrodynamic Model. J Hydrodyn 21(2):255–263

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted under the auspices of the project “Taking up the challenges of multi-scale marine modelling” which is funded by the Communauté Française de Belgique under contract ARC 10/15-028 (Actions de Recherche Concertées) with the aim of developing and using SLIM. Computational resources have been provided by the high-performance computing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS). Eric Deleersnijder and Sandra Soares-Frazão are honorary research associates with this institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien Pham Van.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham Van, C., de Brye, B., Deleersnijder, E. et al. Simulations of the flow in the Mahakam river–lake–delta system, Indonesia. Environ Fluid Mech 16, 603–633 (2016). https://doi.org/10.1007/s10652-016-9445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-016-9445-4

Keywords

Navigation