Skip to main content
Log in

Integrated modeling of flood flows and tidal hydrodynamics over a coastal floodplain

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The interactions of physical processes between estuaries and upstream river floodplains are of great importance to the fish habitats and ecosystems in coastal regions. Traditionally, a hydraulic analysis of floodplains has used one- or two-dimensional models. While this approach may be sufficient for planning the engineering design for flood protection, it is inadequate when floodwaters inundate the floodplain in a complex manner. Similarly, typical estuarine and coastal modeling studies do not consider the effect of upstream river floodplains because of the technical challenge of modeling wetting and drying processes in floodplains and higher bottom elevations in the upstream river domain. While various multi-scale model frameworks have been proposed for modeling the coastal oceans, estuaries, and rivers with a combination of different models, this paper presents a modeling approach for simulating the hydrodynamics in the estuary and river floodplains, which provides a smooth transition between the two regimes using an unstructured-grid, coastal ocean model. This approach was applied to the Skagit River estuary and its upstream river floodplain of Puget Sound along the northwest coast of North America. The model was calibrated with observed data for water levels and velocities under low-flow and high-flood conditions. This study successfully demonstrated that a three-dimensional estuarine and coastal ocean model with an unstructured-grid framework and wetting-drying capability can be extended much further upstream to simulate the inundation processes and the dynamic interactions between the estuarine and river floodplain regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Day JW Jr, Hall CAS, Kemp WM, Yáez-Arancibia A (1989) Estuarine ecology. Wiley, Hoboken

    Google Scholar 

  2. Rupp-Armstrong S, Nicholls RJ (2007) Coastal and estuarine retreat: a comparison of the application of managed realignment in England and Germany. J Coastal Res 23(6): 1418–1430

    Article  Google Scholar 

  3. Schindler DE, Scheuerell MD, Moore JW, Gende SM, Francis TB, Palen WJ (2003) Pacific salmon and the ecology of coastal ecosystems. Frontiers Ecol Env 1(1): 31–37

    Article  Google Scholar 

  4. Beechie T, Beamer E, Wasserman L (1994) Estimating coho salmon rearing habitat and smolt production losses in a large river basin, and implications for habitat restoration. North Am J Fish Manag 14: 797–811

    Article  Google Scholar 

  5. Beamer E, Beechie T, Perkowski B, Klochak J (1999) Application of the Skagit watershed council strategy. Skagit Watershed Council, Mount Vernon

    Google Scholar 

  6. Smith D (2005) Off-channel habitat inventory and assessment for the upper Skagit River basin. Report to non-flow coordinating committee of the Skagit River hydroelectric project (FERC No. 553) by Skagit River System Cooperative, La Conner, WA

  7. Phillips JL, Ory J, Talbot A (2000) Anadromous salmonid recovery in the Umatilla River Basin, Oregon: a case study. J Am Water Resour Assoc 36(6): 1287–1308

    Article  Google Scholar 

  8. Hanrahan TP, Dennis D, Dauble DD, Geist DR (2004) An estimate of Chinook Salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River. Can J Fish Aquat Sci 61(1): 23–33

    Article  Google Scholar 

  9. Goodwin CN, Hawkins CP, Kershner JL (1997) Riparian restoration in the western United States: overview and perspective. Restor Ecol 5((4) (Supplement)): 4–14

    Article  Google Scholar 

  10. Karle KF, Densmore RV (1994) Stream and riparian floodplain restoration in a riparian ecosystem disturbed by placer mining. Ecol Eng 3: 121–133

    Article  Google Scholar 

  11. Palmer MA et al (2005) Standards for ecologically successful river restoration. J Appl Ecol 42: 208–217

    Article  Google Scholar 

  12. Hsu MH, Kuo AY, Kuo J-T, Liu W-C (1998) Modeling estuarine hydrodynamics and salinity for wetland restoration. J Environ Sci Health A 33(5): 891–921

    Article  Google Scholar 

  13. Brennan ML, May CL, Danmeier DG, Crooks S, Haltiner JH (2008) Numerical modeling of restoration alternatives in an erosional estuary. In: Spaulding ML (ed) Proceedings of the 10th international conference. American Society of Civil Engineers, Newport, RI, pp 942–960

    Google Scholar 

  14. Tsihrintzis VA, John DL, Tremblay PJ (1998) Hydrodynamic modeling of wetlands for flood detention. Water Resour Manag 12: 251–269. doi:10.1023/A:1008031011773

    Article  Google Scholar 

  15. Yang Z, Khangaonkar T, Calvi M, Nelson K (2010) Simulation of cumulative effects of nearshore restoration projects on estuarine hydrodynamics. Ecol Model 221: 969–977. doi:10.1016/j.ecolmodel.2008.12.006

    Article  Google Scholar 

  16. Yang Z, Sobocinski KL, Heatwole D, Khangaonkar T, Thom R, Fuller R (2010) Hydrodynamic and ecological assessment of nearshore restoration: a modeling study. Ecol Model 221: 1043–1053. doi:10.1016/j.ecolmodel.2009.07.011

    Article  CAS  Google Scholar 

  17. Callaghan DP, Bouma TJ, Klaassen P, van der Wal D, Stive MJF, Herman PMJ (2010) Hydrodynamic forcing on salt-marsh development: distinguishing the relative importance of waves and tidal flows. Estuar Coast Shelf Sci 89: 73–88

    Article  Google Scholar 

  18. Nestler JM, Milhous RT, Layzer JB (1989) Instream habitat modeling techniques. In: Gore JA, Petts G (eds) EAlternatives in regulative river management. CRC Press, Boca Raton, pp 295–315

    Google Scholar 

  19. Hostetler SW (1991) Analysis and modeling of long-term stream temperatures on the steamboat Creek Basin, Oregon: implications for land use and fish habitat. Water Res Bull WARBAQ 27(4): 637–647

    Google Scholar 

  20. Scruton DA, Heggenes J, Valentin S, Harby A, Bakken TH (1998) Field sampling design and spatial scale in habitat-hydraulic modelling: comparison of three models. Fish Manag Ecol 5: 225–240

    Article  Google Scholar 

  21. Lamouroux N, Capra H, Pouilly M (1998) Predicting habitat suitability for lotic fish: Linking statistical hydraulic models with multivariate habitat use models. Reg Rivers: Res Manag 14: 1–11

    Article  Google Scholar 

  22. Bohn BA, Kershner JL (2002) Establishing aquatic restoration priorities using a watershed approach. J Environ Manag 64: 355–363

    Article  CAS  Google Scholar 

  23. Zang Y, Street RL (1995) A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int J Numer Methods Fluids 20(5): 341–361

    Article  Google Scholar 

  24. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6–7): 561–582

    Article  Google Scholar 

  25. Chen X (2007) Dynamic coupling of a three-dimensional hydrodynamic model with a laterally averaged, two-dimensional hydrodynamic model. J Geophys Res 112: C07022. doi:10.1029/2006JC003805

    Article  Google Scholar 

  26. de Brye B, de Brauwere A, Gourgue O, Kärnä T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. J Coastal Eng 57: 850–863

    Article  Google Scholar 

  27. Chen C, Liu H, Beardsley RC (2003) An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J Atmos Ocean Tech 20: 159–186

    Article  Google Scholar 

  28. Chen C, Beardsley RC, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Special issue entitled “advance in computational oceanography”. Oceanography 19(1): 78–89

    Article  Google Scholar 

  29. Yang Z, Khangaonkar T (2009) Modeling tidal circulation and stratification in Skagit River estuary using an unstructured grid ocean model. Ocean Model 28: 34–49. doi:10.1016/j.ocemod.2008.07.004

    Article  Google Scholar 

  30. Hood WG (2010) Delta distributary dynamics in the Skagit River Delta (Washington, USA): extending, testing, and applying avulsion theory in a tidal system. Geomorphology. doi:10.1016/j.geomorph.2010.07.007

  31. Thomson J (2010) Observations of thermal diffusivity and a relation to the porosity of tidal flat sediments. J Geophys Res 115: C05016. doi:10.1029/2009JC005968

    Article  Google Scholar 

  32. Finlayson DP (2005) Combined bathymetry and topography of the puget lowland, Washington State. University of Washington. http://www.ocean.washington.edu/data/pugetsound/

  33. U.S. Army Corps of Engineers (USACE) (2004) Draft report, Skagit River flood damage reduction study. Hydraulic technical documentation, Seattle, Washington

  34. Skagit County Public Works (1996) Flood warning map for the Skagit River valley from Nookachamps area to Rockport area. Mt Vernon, Washington. ftp://ftp.skagitcounty.net/GIS/Documents/Flood/fld-warn.pdf Accessed 29 Dec 2010

  35. Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  36. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20: 851–875

    Article  Google Scholar 

  37. Chen C, Gao G, Qi J, Proshutinsky A, Beardsley RC, Kowalik Z, Lin H, Cowles G (2009) A new high-resolution unstructured-grid finite-volume Arctic Ocean model (AO-FVCOM): an application for tidal studies. J Geophys Res. doi:10.1029/2008jc004941

  38. Xue P, Chen C, Ding P, Beardsley RC, Lin H, Ge J, Kong Y (2009) Saltwater intrusion into the Changjiang River: a model-guided mechanism study. J Geophys Res 114: C02006. doi:10.1029/2008JC004831

    Article  Google Scholar 

  39. Li C, Chen C, Guadagnoli G, Georgiou IY (2008) Geometry induced residual eddies in estuaries with curved channel-observations and modeling studies. J Geophys Res 113: C01005. doi:10.1029/2006JC004031

    Article  Google Scholar 

  40. Huang H, Chen C, Blanton JO, Andrade FA (2008) Numerical study of tidal asymmetry in the Okatee Creek, South Carolina, estuaries. Coast Shelf Sci 78: 190–202

    Article  Google Scholar 

  41. Yang Z, Khangaonkar T (2010) Multi-scale modeling of puget sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters. J Ocean Dynam 60: 1621–1637. doi:10.1007/s10236-010-0348-5

    Article  Google Scholar 

  42. Chen C, Qi J, Li C, Beardsley RC, Lin H, Walker R, Gates K (2008) Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: an application of FVCOM. J Geophys Res 113: C07052. doi:10.1029/2007jc004328

    Article  Google Scholar 

  43. Weisberg RH, Zheng L (2006) Hurricane storm surge simulations for Tampa Bay. Estuaries Coasts 29(6A): 899–913

    Google Scholar 

  44. Qi J, Chen C, Beardsley RC, Perrie W, Cowles G (2009) An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model 28: 153–166. doi:10.1016/j.ocemod.2009.01.007

    Article  Google Scholar 

  45. Huang Y, Weisberg RH, Zheng L (2010) Coupling of surge and waves for an Ivan-like hurricane impacting the Tampa Bay, Florida region. J Geophys Res 115: C12009. doi:10.1029/2009JC006090

    Article  Google Scholar 

  46. Pappenberger F, Beven K, Frodsham K, Romanowicz R, Matgen P (2007) Grasping the unavoidable subjectivity in calibration of flood inundation models: a vulnerability weighted approach. J Hydrol 233: 275–287

    Article  Google Scholar 

  47. Mason DC, Bates PD, Dall’ Amico JT (2009) Calibration of uncertain flood inundation models using remotely sensed water levels. J Hydrol 233: 275–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Wang, T., Khangaonkar, T. et al. Integrated modeling of flood flows and tidal hydrodynamics over a coastal floodplain. Environ Fluid Mech 12, 63–80 (2012). https://doi.org/10.1007/s10652-011-9214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-011-9214-3

Keywords

Navigation