Skip to main content
Log in

Analytical evaluation of mesoscale fluxes and pressure field

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Terrain in natural areas is never homogeneous: there may be a variety of vegetation types and patches of vegetated and unvegetated areas which can modify the mesoscale atmospheric flow. Moreover, horizontal thermal inhomogeneities in the planetary boundary layer are a well known source of mesoscale circulation systems such as land and sea breezes, mountain-valley winds, and urban heat island circulations. Since those phenomena are not resolved in regional scale numerical models, therefore an analytic procedure able to evaluate the relative importance of mesoscale and turbulent heat fluxes associated with surface thermal heterogeneities is of crucial importance in the optic of developing a parameterization of mesoscale effects generated by these heterogeneities for use in larger scale models. In the present paper we analyze how small a horizontal variation in surface heating can be and still produce a significant mesoscale circulation, how the heat and momentum fluxes associated to mesoscale flows can penetrate deeply into the mid-troposphere, and how they modify tropospheric relevant climate parameters, such as the atmospheric static stability. In addition, we evaluate the terms of the pressure gradient force, nonlinear and linear, non-hydrostatic and hydrostatic, as function of time and space scales of the mesoscale flow. The present paper is mainly a review of analytical results, the numerical comparison and verification using RAMS is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avissar, R. and Pielke, R.A.: 1989, A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology, Mon. Wea. Rev. 117, 2113–2136.

    Google Scholar 

  2. Chen, F. and Avissar, R.: 1994, Impact of land-surface moisture variabilities on local shallow convective cumulus and precipitation in large-scale models, J. Appl. Meteorol. 33, 1382–1394.

    Google Scholar 

  3. Cotton, W.R. and Pielke, R.A.: 1995, Human Impacts on Weather and Climate, Cambridge University Press, New York, p. 288.

    Google Scholar 

  4. Dalu, G.A. and Pielke, R.A.: 1989, An analytical study of the sea breeze, J. Atmos. Sci. 46, 1815–1825.

    Google Scholar 

  5. Ookouchi, Y., Segal, M., Kessler, R.C. and Pielke, R.A.: 1984, Evaluation of soil moisture effects on the generation and modification of mesoscale circulation, Mon. Wea. Rev. 117, 2113–2136.

    Google Scholar 

  6. Pielke Sr., R.A.: 2002, Mesoscale Meteorological Modeling, 2nd edition, Academic Press, San Diego, CA. 676 pp.

    Google Scholar 

  7. Rotunno, R.: 1983, On the linear theory of land and sea breeze, J. Atmos. Sci., 40, 1999–2009.

    Google Scholar 

  8. Segal, M., Avissar, R., McCumber, M.C. and Pielke, R.A.: 1988, Evaluation of vegetation effects on the generation and modification of mesoscale circulations, J. Atmos. Sci., 45, 2268–2292.

    Google Scholar 

  9. Segal, M. and Arritt, R.W.: 1992, Non-classical mesoscale circulations caused by surface sensible heat-flux gradients, Bull. Amer. Meteorol. Soc. 73, 1593–1604.

    Google Scholar 

  10. Zhang, D. and Anthes, R.A.: 1982, A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data, J. Appl. Meteorol. 21, 1594–1609.

    Google Scholar 

  11. Garrett, A.J.: 1982, A parameter study of interactions between convective clouds, the convective boundary layer, and forested surface, Mon. Wea. Rev. 110, 1041–1059.

    Google Scholar 

  12. Yan, H. and Anthes, R.A.: 1988, The effect of variations in surface moisture on mesoscale circulations, Mon. Wea. Rev. 116, 192–208.

    Google Scholar 

  13. Dalu, G.A., Pielke, R.A., Vidale, P.L. and Baldi, M.: 2000, Heat transport and weakening of the atmospheric stability induced by mesoscale flows, J. Geophys. Res. 105,D7, 9349–9363.

    Google Scholar 

  14. Hanna, S.R. and Swisher, S.D.: 1971, Meteorological effects of the heat and moisture produced by man, Nucl. Saf. 12, 114–122.

    Google Scholar 

  15. Anthes, R.A.: 1984, Enhancement of convective precipitation by mesoscale variation in vegetative covering in semi-arid regions, J. Appl. Meteorol. 23, 541–554.

    Google Scholar 

  16. Segal, M., Pielke, R.A. and Mahrer, T.: 1984, Evaluation of surface sensible heat flux effects on the generation and modification of mesoscale circulations, In: Proc. Second Int. Symp. on Nowcasting, European Space Agency, Norrkoping, Sweden, pp. 263–269.

    Google Scholar 

  17. Segal, M., Schreiber, W., Kallos, G., Pielke, R.A., Garratt, J.R., Weaver, J., Rodi, A. and Wilson, J.: 1989, The impact of crop areas in northeast Colorado on midsummer mesoscale thermal circulations, Mon. Wea. Rev. 117, 809–825.

    Google Scholar 

  18. Abbs, D.J. and Pielke, R.A.: 1986, Thermally forced surface flow and convergence patterns over northeast Colorado. Mon. Wea. Rev. 114, 2281–2296.

    Google Scholar 

  19. Mahfouf, J-F., Richard, E. and Mascart, P.: 1987, The influence of soil and vegetation on the development of mesoscale circulations, J. Climate Appl. Meteorol. 26, 1483–1495.

    Google Scholar 

  20. Mahrer, Y. and Pielke, R.A.: 1977, A numerical study of the air flow over irregular terrain, Contrib. Atmos. Phys. 50, 98–113.

    Google Scholar 

  21. McCumber, M.C. and Pielke, R.A.: 1981, Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model, J. Geophys. Res. 86, 9929–9938.

    Article  Google Scholar 

  22. Pielke R.A., Dalu, G.A., Snook, J.S., Lee, T.J. and Kittel, T.G.F.: 1991, Nonlinear influence of mesoscale land-use on weather and climate, J. Climate 4, 1053–1069.

    Google Scholar 

  23. Pielke, R.A., Rodriguez, J.H., Eastman, J.L., Walko, R.L. and Stocker, R.A.: 1993, Influence of albedo variability in complex terrain on mesoscale systems, J. Climate 6, 1798–1806.

    Google Scholar 

  24. Dalu, G.A., Pielke, R.A., Avissar, R., Kallos, G., Baldi, M. and Guerrini, A.: 1991, Linear impact of thermal inhomogeneities on mesoscale atmospheric flow with zero synoptic wind, Ann. Geophys. 9, 641–647.

    Google Scholar 

  25. Manqian, M. and Jinjun, J.: 1993, A coupled model on land-atmosphere interactions — simulating the characteristics of the PBL over a heterogeneous surface, Boundary-Layer Meteorol. 66, 247–264.

    Google Scholar 

  26. Raupach, M.R.: 1991, Vegetation-atmosphere interaction in homogeneous and heterogeneous terrain: Some implications of mixed layer dynamics. In: Henderson-Sellers and Pitman (eds.), Vegetation and Climate Interactions in Semi-Arid Regions, Dordrecht, The Netherlands, Kluwer Academic Publishers, pp. 105–120.

    Google Scholar 

  27. Guo, Y., and Schuepp, P.H.: 1994, An analysis of the effect of local heat advection on evaporation over wet and dry surface strips, J. Climate 7, 641–652.

    Google Scholar 

  28. Zhong, S. and Doran, J.C.: 1995, A modeling study of the effects of the effects of inhomogeneous surface fluxes on boundary-layer properties, J. Atmos. Sci. 52, 3129–3142.

    Google Scholar 

  29. Avissar, R. and Chen, F.: 1993, Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid-scale) fluxes for large-scale atmospheric models, J. Atmos. Sci. 50, 3751–3774.

    Google Scholar 

  30. André, J.-C., Bougeault, P., Mahfouf, J.-F., Mascart, P., Noilhan, J. and Pinty, J.-P.: 1989, Impact of forests on mesoscale meteorology, Phil. Trans. Roy. Soc. London 324, 407–422.

    Google Scholar 

  31. Zeng, X. and Pielke, R.A.: 1993, Error-growth dynamics and predictability of surface thermally-induced atmospheric flow, J. Atmos. Sci. 50, 2817–2844.

    Google Scholar 

  32. Zeng, X. and Pielke, R.A.: 1995, Further study on the predictability of landscape-induced atmospheric flow, J. Atmos. Sci. 52, 1680–1698.

    Google Scholar 

  33. Zeng, X.: 1992, Chaos theory and its application in the atmosphere, Atmospheric Science Paper No. 504, Colorado State University, R.A. Pielke, P.I., 178 pp.

    Google Scholar 

  34. Li, B. and Avissar, R.: 1994, The impact of spatial variability of land-surface heat fluxes, J. Climate 7, 527–537.

    Google Scholar 

  35. Kosta, R.D. and Suarez, M.J.: 1992, A comparative analysis of two land surface heterogeneity representations, J. Climate 5, 1379–1390.

    Google Scholar 

  36. Bonan, G.B., Pollard, D. and Thompson, S.L.: 1993, Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land-atmosphere interactions, J. Climate 6, 1882–1897.

    Google Scholar 

  37. Pleim, J.E. and Xiu, A.: 1995, Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models, J. Appl. Meteorol. 34, 16–32.

    Article  Google Scholar 

  38. Pitman, A.J. 1994, Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model, J. Climate 7, 1856–1869.

    Google Scholar 

  39. Henderson-Sellers, A., Yang, Z.-L. and Dickinson, R.E.: 1993, The project for intercomparison of land-surface parameterization schemes, Bull. Amer. Meteorol. Soc. 74, 1335–1349.

    Google Scholar 

  40. Collins, D.C. and Avissar, R.: 1994, An evaluation with the Fourier Amplitude Sensitivity Test (FAST) of which land surface parameters are of greatest importance in atmospheric modeling, J. Climate 7, 681–703.

    Google Scholar 

  41. Arritt, R.W. and Clark, C.A.: 1994, Functional relationships among soil moisture, vegetation cover, and surface fluxes, In: Proc., Special Session on Hydrometeorology, AMS, March 7–10, 1994, San Diego, CA.

  42. Glendening, J.W. and Lin, C.L.: 2002, Large eddy simulation of internal boundary layers created by a change in surface roughness, J. Atmos. Sci. 59, 1697–1711.

    Google Scholar 

  43. Lin, C.L. and Glendening, J.W.: 2002, Large eddy simulation of an inhomogeneous atmospheric boundary layer under neutral conditions, J. Atmos. Sci. 59, 2479–2497.

    Google Scholar 

  44. Gopalakrishnan, S.G., Roy, S.B. and Avissar, R.: 2000, An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations, J. Atmos. Sci. 57, 334–351.

    Google Scholar 

  45. Gopalakrishnan, S.G. and Avissar, R.: 2000, An LES study of the impacts of land surface heterogeneity on dispersion in the convective boundary layer, J. Atmos. Sci. 57, 352–371.

    Google Scholar 

  46. Roy, S.B., Avissar, R.: 2000, Scales of response of the convective boundary layer to land surface heterogeneity, J. Geophys. Res. Lett. 27, 533–536.

    Google Scholar 

  47. Wang, J., Bras, R.L. and Eltahir, E.A.B.: 1996, A stochastic linear theory of mesoscale circulation induced by the thermal heterogeneity of the land surface, J. Atmos. Sci. 53, 3349–3366.

    Google Scholar 

  48. Lynn, B.H., Rind, D. and Avissar, R.: 1995, The importance of subgrid-scale mesoscale circulations generated by landscape heterogeneity in general circulation models (GCMs), J. Climate 8, 191–205.

    Google Scholar 

  49. Pielke, R.A., Zeng, X., Lee, T.J. and Dalu, G.A.: 1997, Mesoscale fluxes over heterogeneous flat landscapes for use in larger scale models, J. Hydrol. 190, 317–336.

    Google Scholar 

  50. Cassano, J.L. and Parish, T.R.: 2000, An analysis of the nonhydrostatic dynamics in numerically simulated Antarctic katabatic flows, J. Atmos. Sci. 57, 891–898.

    Google Scholar 

  51. Rõõm, R. and Männik, A.: 1999, Responses of different nonhydrostatic, pressure-coordinate models to orographic forcing, J. Atmos. Sci. 56, 2553–2570.

    Google Scholar 

  52. Sun, W.-Y.: 1984, Numerical analysis for hydrostatic and nonhydrostatic equations of inertial-internal gravity waves, Mon. Wea. Rev. 112, 259–268.

    Google Scholar 

  53. Smith, R.B.: 1989, Hydrostatic air-flow over mountains, Adv. Geophys. 31, 1–41.

    Article  Google Scholar 

  54. Thunis, P. and Clappier, A.: 2000, Formulation and evaluation of a nonhydrostatic mesoscale vorticity model (TVM), Mon. Wea. Rev. 128, 3236–3251.

    Google Scholar 

  55. Seman, C.J.: 1994, A numerical study on nonlinear nonhydrostatic conditional symmetric instability in a convectively unstable atmosphere, J. Atmos. Sci. 51, 1352–1371.

    Google Scholar 

  56. Donner, L.J., Seman, C.J., Hemler, R.S. and Fan, S.: 2001, A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model, J. Climate 14, 3444–3463.

    Google Scholar 

  57. Molemaker, M.J. and Dijkstra, H.: 2000, Stability of a cold core eddy in the presence of convection: Hydrostatic versus nonhydrostatic modeling, J. Phys. Oceanogr. 30, 475–494.

    Google Scholar 

  58. Cotton, W.R. and Anthes, R.A.: 1989, Storm and Cloud Dynamics. Academic Press, San Diego, CA, 883 pp.

    Google Scholar 

  59. Song, J.L., Pielke, R.A., Arritt, R.W. and Kessler, R.C.: 1985, A method to determine nonhydrostatic effects within subdomains in a mesoscale model, J. Atmos. Sci. 42, 2110–2119.

    Google Scholar 

  60. Dalu, G.A., Pielke, R.A., Baldi, M. and Zeng, X.: 1996, Heat and momentum fluxes induced by thermal inhomogeneities, J. Atmos. Sci. 53, 3286–3302.

    Google Scholar 

  61. Stull, R.B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  62. LePage, W.R.: 1961, Complex Variables and the Laplace Transform for Engineers, Dover Publications.

  63. Crook, N.A. and Klemp, J.B.: 2000, Lifting by convergence lines, J. Atmos. Sci. 57, 873–890.

    Google Scholar 

  64. André, J.-C., Goutorbe, J.P., Schmugge, T. and Perrier, A.: 1989b, HAPEX-MOBILHY: Results from a large-scale field experiment. In: A. Rango, (ed.), Remote Sensing and Large-Scale Global Processes, Wallingford, UK, International Association of Hydrological Sciences, pp. 13–20.

    Google Scholar 

  65. Dalu, G.A. and Pielke, R.A.: 1993, Vertical heat fluxes generated by mesoscale atmospheric flow induced by thermal inhomogeneities in the PBL, J. Atmos. Sci. 50, 919–926.

    Google Scholar 

  66. Rotunno, R. and Klemp, J.: 1982, The influence of the shear-induced pressure gradient on thunderstorm motion, Mon. Wea. Rev. 110, 136–151.

    Google Scholar 

  67. Weidman, S.T. and Pielke, R.A.: 1983, A more accurate method for the numerical solution of nonlinear partial differential equations, J. Comput. Phys. 49, 342–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, M., Dalu, G.A., Pielke, R.A. et al. Analytical evaluation of mesoscale fluxes and pressure field. Environ Fluid Mech 5, 3–33 (2005). https://doi.org/10.1007/s10652-005-8089-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-005-8089-6

Key words

Navigation