Skip to main content
Log in

Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Due to the growing rate of urbanization and a rapid and unplanned development in many tropical coastal areas, there continues to be an increasing concern in relation to the impact of anthropogenic activities on mangrove sediments. In southeastern Brazil, the Sepetiba Bay becomes an example of an ecosystem in the process of accelerated degradation. Previous studies highlighted the activities related with zinc processing by an industry on the Madeira’s Island as one of the main source of heavy metal to Sepetiba Bay. Despite the end of the industrial activities in the area, the waste reservoir became the main source of pollutant to the surrounding area. Analyses of Cd, Pb, Cu, Cr, Hg, Ni, Zn, particle size and nutrients of 20 sediment samples collected in the mangrove of the Madeira Island showed that the waste reservoir is the main source of contaminant to the mangrove. The statistic analyses showed that the moisture content and organic matter play an important role in the geochemical dynamic of heavy metal in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway BJ (1990) Heavy metals in soils. John Wiley, New York, p 339

    Google Scholar 

  • APHA (1995) Standard methods, 19th edn. American Public Health Association, Washington

    Google Scholar 

  • APHA/AWWA/WEF (1998) American public health association, American water works association, water environment federation—APHA. Standard methods for the examination of water and wastewater. 20 (ed) Washington

  • Baptista Neto JA, Smith BJ, McAlister JJ (2000) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, SE Brazil. Environ Pollut Elsevier 109(1):1–9

    Article  Google Scholar 

  • Baptista Neto JA, Gingele FX, Leipe T, Brehme I (2006) Spatial distribution of trace elements in surficial sediments from Guanabara Bay—Rio de Janeiro/Brazil. Environ Geol 49(7):1051–1063

    Article  Google Scholar 

  • Barcellos C, Lacerda LD (1994) Cadmium and zinc source assessment in the Sepetiba Bay and basin region. Environ Monit Assess 29:183–194

    Article  Google Scholar 

  • Barrocas PR, Wasserman JC (1995) O mercúrio na baía de Guanabara; uma visão histórica. Geochimica Brasiliensis 9(2):115–127

    Google Scholar 

  • Biddappa CC, Chino M, Kumazawa K (1982) Migration of heavy metals in two Japanese soils. Plant Soil 66:299–316

    Article  Google Scholar 

  • Bresler V, Abelson A, Fishelson L, Feldstein T, Rosenfeld M, Mokady O (2003) Marine molluscs in environmental monitoring. I. Cellular and molecular responses. Helgol Mar Res 57:157–165

    Article  Google Scholar 

  • Callahan MA, Slimak MW, Gable NW (1979) Water-related fate of 129 priority pollutants. US Environmental Protection Agency, Office of Water Planning and Standards, Washington

    Google Scholar 

  • Calvert SE, Mukherjee S, Morris RJ (1985) Trace metals in fulvic and humic acids from modern organic rich sediments. Oceanol Acta 8:167–173

    Google Scholar 

  • Coston JA, Fuller CC, Davis JA (1995) Pb+2 and Zn+2 adsorption by natural aluminum- and iron-bearing surface coating on an aquifer sand. Geochimica Cosmochimica Acta 59:3535–3547

    Article  Google Scholar 

  • Cunha CLN, Rosman PCC, Ferreira AP, Monteiro TCN (2006) Hydrodynamics and water quality models applied to Sepetiba Bay. Cont Shelf Res 26:1940–1953

    Article  Google Scholar 

  • De Wolf H, Rashid R (2008) Heavy metal accumulation in Littoraria scabra along polluted and pristine mangrove areas of Tanzania. Environ Pollut 152:636–643

    Article  Google Scholar 

  • Elinder CG (1992) Cadmium as an environmental hazard. IARC—International agency of research on cancer. Science Publication 1118:123–132

    Google Scholar 

  • Faria MM, Sanchez B (2001) Geochemistry and mineralogy of recent sediments of Guanabara Bay (NE sector) and its major rivers—Rio de Janeiro State—Brazil. Anais da Academia Brasileira de Ciências 73:121–133

    Article  Google Scholar 

  • Fonseca EM, Baptista Neto JA, Crapez MC, McAlister JJ, Fernandez MA, Bispo MG (2009) Bioavailability of heavy metals in Guanabara Bay, Rio de Janeiro, (Brazil). J Coastal Res 56:802–806

    Google Scholar 

  • Fonseca EM, Baptista Neto JA, Fernandez MA, McAlister JJ, Smith B (2011) Geochemical behavior of heavy metals in differents environments in Rodrigo de Freitas lagoon—RJ/Brazil. Anais da Academia Brasileira de Ciências 83(2):457–469

    Article  Google Scholar 

  • Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JÁ, Lacerda LD, Wasserman JC (2009) Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study. Mar Pollut Bull 59:123–133

    Article  Google Scholar 

  • Harbison P (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17:246–250

    Article  Google Scholar 

  • Harris RR, Santos MCF (2000) Heavy metal contamination and physiological variability in the Brazilian mangrove crabs, Ucides cordatus and Callinectes danoe (Crustacea: Decapoda). Mar Biol 137:691–703

    Article  Google Scholar 

  • Harty C (1997) Mangroves in New South Wales and Victoria. Vista Publications, Melbourne, p 47

    Google Scholar 

  • Huang KM, Lin S (2003) Consequences and implication of heavy metal spatial variation in sediments of the Keelung River drainage basin, Taiwan. Chemosphere 53:1113–1121

    Article  Google Scholar 

  • Irvine I, Birch GF (1998) Distribution of heavy metals in surficial sediments of Port Jackson, Sydney, New South Wales. Aust J Earth Sci 45:297–304

    Article  Google Scholar 

  • Khan DH, Frankland B (1983) Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant Soil 70:335–345

    Article  Google Scholar 

  • Lacerda LD (1997) Trace metals in mangrove plantas: why such low concentrations? In: Kjerfve B, Lacerda LD, Diop HS (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 171–178

    Google Scholar 

  • Lacerda LD, Molisani MM (2006) Contamination by Cd and Zn in Sepetiba bay, SE Brazil during the past three decades recorded in the mangrove oyster Crassostrea rhizophorae. Mar Pollut Bull 52:974–977

    Article  Google Scholar 

  • Lacerda LD, Pfeiffer WC, Fiszman M (1987) Heavy metal distribution, fate and availability in Sepetiba Bay, SE Brazil. Sci Total Environ 65:163–173

    Article  Google Scholar 

  • Lacerda LD, Fernandez MA, Calazans, CF, Tanizaki KF (1992). Bioavailability of heavy metals in sediments of two coastal lagoons in Rio de Janeiro, Brazil. In: Golterman HL (ed), Sediment—water interaction. Hydrobiologia 228, 65–70

  • Leal M, Wagener A (1993) Remobilization of anthropogenic copper deposited in sediments of a tropical estuary. Chem Spec Bioavail 24:31–39

    Google Scholar 

  • Lionetto MG, Giordano ME, Vilella S, Schettino T (2000) Inhibition of eel enzymatic activities by cadmium. Aquat Toxicol 48:561–571

    Article  Google Scholar 

  • Loureiro DD, Fernandez MA, Herms FW, Lacerda LD (2009) Heavy metal inputs evolution to an urban hypertrophic coastal lagoon, Rodrigo De Freitas Lagoon, Rio De Janeiro, Brazil. Environ Monit Assess 159:1–4

    Article  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  Google Scholar 

  • Marins RV, Lacerda LD, Paraquetti HHM, Paiva EC, Villas Boas RC (1998) Geochemistry of mercury in sediments of a sub-tropical coastal lagoon, Sepetiba Bay, Southeastern Brazil. Bulletin Environ Contam Toxicol 61:57–64

    Article  Google Scholar 

  • Martin JM, Meybeck N (1979) Elemental mass balance of materials carried by major world rivers. Mar Chem 7:173–206

    Article  Google Scholar 

  • Mundell JA, Hill KR, Weaver JWI (1989). In situ case history: leachable lead required precipitation immobilization. Hazard Waste Manage pp 23–27

  • Muniz P, Danulat E, Yannicelli B, Garcia-Alonso J, Medina G, Bicego MC (2003) Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo harbour (Uruguay). Environ Int 1096:1–10

    Google Scholar 

  • Olson KW, Skogerboe RK (1975) Identification of soil lead compounds from automotive sources. Environ Sci Technol 9:227–230

    Article  Google Scholar 

  • Paraquetti HHM, Ayres GA, Almeida M, Molisani MM, Lacerda LD (2004) Mercury, distribution speciation and flux in the Sepetiba Bay tributaries. Water Res 38:1439–1448

    Article  Google Scholar 

  • Perwak J, Bysshe S Goyer, M (1980) An exposure and risk assessment for copper. USEPA. USEPA-440/4-81-015, Washington

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  Google Scholar 

  • Pruski AM, Dixon DR (2002) Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquatic Toxicology 57,127–137

    Google Scholar 

  • Rebelo MF, Amaral MCR, Pfeiffer WC (2003) High Zn and Cd contamination in oyster from a contaminated coastal lagoon and its role in contamination assessment. Mar Pollut Bull 46:1354–1358

    Article  Google Scholar 

  • Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP, Bailly B, Rahmani R (2001) Cadmium induced apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. Aquat Toxicol 53:65–76

    Article  Google Scholar 

  • Santos FS, dos Hernandezallica JBJM, Amaral Sobrinho NMB, Mazur N, Garbisu C (2006) Chelate induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    Article  Google Scholar 

  • Schaeffer-Novelli, Y, Cintron G, Adaime RR, Camargo TM (1990). Variability of The Mangrove ecosystem along the Brazilian Coast. Estuaries, vol 13, No 2

  • Sheppard MI, Thibault DH (1992) Desorption and extraction of selected heavy metals from soils. Soil Sci Soc Am J 56:415–423

    Article  Google Scholar 

  • Tam NFY, Wong YS (1996) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94:283–291

    Article  Google Scholar 

  • Tam NFY, Wong YS (2000) Spatial variation of heavy metal in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961). Distribution of the elements in some major units of earths crust. Geol Soc Am Bulletin, No 72 p 175–192

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, E.F., Baptista Neto, J.A. & Silva, C.G. Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil. Environ Earth Sci 70, 643–650 (2013). https://doi.org/10.1007/s12665-012-2148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2148-3

Keywords

Navigation