Skip to main content

Advertisement

Log in

Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Rainfall, a vital component of hydrological cycle, plays a key role in appropriate planning and sustainable management of water resources in water-short regions. However, its uneven distribution over the space and time necessitates getting knowledge about its variability. This study aimed at evaluating efficacy of ordinary and Bayesian kriging techniques in depicting spatial and temporal variability of annual rainfall in arid and semi-arid regions of north-west India. Using 35-year gridded rainfall datasets of India Meteorological Department (IMD at 0.5° resolution, 1971–2005) and Climate Forecast System Reanalysis (CFSR at 0.3° resolution, 1979–2013), geostatistical modelling was performed by employing five kriging techniques with novelty of exploring potential of empirical Bayesian kriging (EBK) technique, for the first time, for rainfall datasets in this study. Performance of the kriging techniques was evaluated by cross-validation based on five criteria. Both exponential ordinary kriging (EOK) and EBK revealed better performance over other kriging techniques. Thus, EOK and EBK were further examined by adopting goodness-of-fit criteria of correlation coefficient (r) and root-mean-square error (RMSE). Very high r values indicated equally excellent performance of both the techniques; however, less RMSE values in case of EBK suggested it as the best-fit technique, which was then used for developing spatially distributed rainfall raster. Spatially distributed 35-year mean annual rainfall (MAR) and coefficient of variation (CV) highlighted very high temporal variability of the annual rainfall (CV > 120%) in the western arid lands of the country with <150 mm MAR values. Thus, under the scenario of scarce availability and high rainfall variability, urgent actions are needed to be taken such as implementation of rainwater-harvesting and groundwater-recharging structures, adoption of less water-requiring crops and micro-irrigation methods in agriculture. Moreover, these findings are useful for the decision makers, planners and resource managers to formulate appropriate strategies for conserving and sustainably managing precious rainwater quantities in arid regions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abtew W, Trimble P (2010) El Niño-Southern Oscillation Link to South Florida Hydrology and Water Management Applications. Water Resour Manag 24:4255–4271. doi:10.1007/s11269-010-9656-2

    Article  Google Scholar 

  • Balathandayutham K, Mayilswami C (2014) Evaluation of spatial and temporal characteristics of rainfall variability on Parambikulam Aliyar Palar (Pap) Basin, Tamil Nadu, India. Trends Biosci 7(3):183–190

    Google Scholar 

  • Basistha A, Arya DS, Goel NK (2007) Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region. Water Resour Manag 22:1325–1346. doi:10.1007/s11269-007-9228-2

    Article  Google Scholar 

  • Berndt C, Rabiei E, Haberlandt U (2014) Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. J Hydrol 508:88–101. doi:10.1016/j.jhydrol.2013.10.028

    Article  Google Scholar 

  • Buytaert W, Celleri R, Willems P et al (2006) Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J Hydrol 329:413–421. doi:10.1016/j.jhydrol.2006.02.031

    Article  Google Scholar 

  • Carvalho RC, Woodroffe CD (2015) Rainfall Variability in the Shoalhaven River Catchment and its Relation to Climatic Indices. Water Resour Manag 29:4963–4976. doi:10.1007/s11269-015-1098-4

    Article  Google Scholar 

  • Castrignanò A, Giugliarini L, Risaliti R, Martinelli N (2000) Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 97:39–60. doi:10.1016/S0016-7061(00)00025-2

    Article  Google Scholar 

  • Chen F-W, Liu C-W (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10:209–222. doi:10.1007/s10333-012-0319-1

    Article  Google Scholar 

  • Chu SL, Zhou ZY, Yuan L, Chen QG (2008) Study on spatial precipitation interpolation methods. Pratacult Sci 25(6):19–23

    Google Scholar 

  • CRU (2000) Climate Research Unit, University of East Anglia. http://www.cru.uea.ac.uk. Accessed 10 May 2016

  • Dastane NG, Food and Agriculture Organization of the United Nations (1978) Effective rainfall in irrigated agriculture. FAO. Version 25. http://www.fao.org/docrep/X5560E/X5560E00.htm. Accessed 15 April 2016

  • Delitala AMS, Cesari D, Chessa PA, Ward MN (2000) Precipitation over Sardinia (Italy) during the 1946–1993 rainy seasons and associated large-scale climate variations. Int J Climatol 20:519–541. doi:10.1002/(SICI)1097-0088(200004)20:5<519::AID-JOC486>3.0.CO;2-4

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-hall, London

    Google Scholar 

  • Dubois G (1998) Spatial interpolation comparison 97: foreword and introduction. J Geogr Inf Decis Anal 2:1–10

    Google Scholar 

  • Feng ZM, Ding XQ, Lin ZH, Yang YY (2004) Optimization of the spatial interpolation methods for climate resources. Geogr Res 23:357–364

    Google Scholar 

  • Fuka DR, Walter MT, MacAlister C et al (2013) Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol Process 28:5613–5623. doi:10.1002/hyp.10073

    Article  Google Scholar 

  • Garcia M, Peters-Lidard CD, Goodrich DC (2008) Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resour Res 44. doi:10.1029/2006WR005788

  • Geisser S (1993) Predictive inference. Chapman and Hall, New York

    Book  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Gupta A, Thakur PK, Nikam BR, Chouksey A (2014) Hydrological modelling of upper and middle Narmada basin using geospatial tools. In: Tiwari HL, Suresh S, Jaiswal RK (eds) Hydraulics, water resources, coastal and environmental engineering. Excellent Publishing House, New Delhi, pp 663–675. doi:10.13140/RG.2.1.1065.3688

    Google Scholar 

  • Gupta A, Kumari M, Rao BK (2017) Spatial and Temporal Variability Analysis Using Modelled Precipitation Data in Upper Catchment of Chambal Basin. In: Abdalla O, Kacimov A, Chen M et al (eds) Water Resources in Arid Areas: The Way Forward. Springer International Publishing, Cham, pp. 75–88. doi:10.1007/978-3-319-51856-5_5

  • Gyalistras D (2003) Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000). Clim Res 25:55–83. doi:10.3354/cr025055

    Article  Google Scholar 

  • Haan CT (2002) Statistical methods in hydrology, 2nd edn. Iowa State Press, Iowa

    Google Scholar 

  • Haberlandt U (2007) Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J Hydrol 332:144–157. doi:10.1016/j.jhydrol.2006.06.028

    Article  Google Scholar 

  • Haigh MJ (2004) Sustainable management of head water resources: the Nairobi head water declaration (2002) and beyond. Asian J Water Environ Pollut 1(1–2):17–28

    Google Scholar 

  • Hsieh HH, Cheng SJ, Liou JY, Chou SC, Siao BR (2006) Characterization of spatially distributed summer daily rainfall. J Chin Agric Eng 52(1):47–55

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9:385–403. doi:10.1080/02693799508902045

    Article  Google Scholar 

  • Hutchinson MF (1998a) Interpolation of rainfall data with thin plate smoothing splines—part I: two dimensional smoothing of data with short range correlation. J Geogr Inf Decis Anal 2:139–151

    Google Scholar 

  • Hutchinson MF (1998b) Interpolation of rainfall data with thin plate smoothing splines—part II: analysis of topographic dependence. J Geogr Inf Decis Anal 2:152–167

    Google Scholar 

  • Isaaks EH (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Isaaks EH, Srivastava RM (1990) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jajoria DK, Sharma SK, Narolia GP, Dotaniya ML (2015) Rainfall variability: a tool for crop planning of Udaipur region of India. Natl Acad Sci Lett 38:95–98. doi:10.1007/s40009-014-0305-9

    Article  Google Scholar 

  • Journel AG, Huijbregts Ch-J (1978) Mining Geostatistics. Academic Press, New York, 600 p

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Kisaka MO et al (2015) Rainfall variability, drought characterization, and efficacy of rainfall data reconstruction: case of eastern Kenya. Adv Meteorol 2015:1–16. doi:10.1155/2015/380404

    Article  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, New York, 249 p

    Book  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, vol 2. Morgan Kaufmann publishers Inc., San Francisco, CA, USA, pp 1137–1143

  • Kong Y, Tong W (2008) Spatial exploration and interpolation of the surface precipitation data. Geogr Res 27:1097–1108

    Google Scholar 

  • Krivoruchko K (2012a) Empirical Bayesian kriging. ArcUser Fall 2012. http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html. Accessed 18 July 2016

  • Krivoruchko K (2012b) Modeling contamination using empirical Bayesian kriging. ArcUser Fall 2012. http://www.esri.com/news/arcuser/1012/modeling-contamination-using-empirical-bayesian-kriging.html. Accessed 18 July 2016

  • Kusre BC, Singh KS (2012) Study of spatial and temporal distribution of rainfall in Nagaland (India). Int J Geomat Geosci 2:712–722

    Google Scholar 

  • Lavers DA, Villarini G, Allan RP et al (2012) The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J Geophys Res Atmos 117. doi:10.1029/2012JD018027

  • Li JL, Zhang J, Zhang C, Chen QG (2006) Analyze and compare the spatial interpolation methods for climate factor. Pratacult Sci 23(8):6–11

    Google Scholar 

  • Li L, Xu C-Y, Zhang Z, Jain SK (2014) Validation of a new meteorological forcing data in analysis of spatial and temporal variability of precipitation in India. Stoch Environ Res Risk Assess 28:239–252. doi:10.1007/s00477-013-0745-7

    Article  Google Scholar 

  • Lloyd CD (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J Hydrol 308:128–150. doi:10.1016/j.jhydrol.2004.10.026

    Article  Google Scholar 

  • Louvet S, Paturel JE, Mahé G et al (2016) Comparison of the spatiotemporal variability of rainfall from four different interpolation methods and impact on the result of GR2M hydrological modeling—case of Bani River in Mali, West Africa. Theor Appl Climatol 123:303–319. doi:10.1007/s00704-014-1357-y

    Article  Google Scholar 

  • Machiwal D, Mishra A, Jha MK et al (2012) Modeling Short-Term Spatial and Temporal Variability of Groundwater Level Using Geostatistics and GIS. Nat Resour Res 21:117–136. doi:10.1007/s11053-011-9167-8

    Article  Google Scholar 

  • Mahalingam B, Deldar AN, Vinay M (2015) Analysis of selected spatial interpolation techniques for rainfall data. Int J Curr Res Rev 7:66–71

    Google Scholar 

  • Mair A, Fares A (2010) Comparison of rainfall interpolation methods in a mountainous region of a tropical Island. J Hydrol Eng 16:371–383. doi:10.1061/(ASCE)HE.1943-5584.0000330

    Article  Google Scholar 

  • Mirzaei R, Sakizadeh M (2016) Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ Sci Pollut Res 23:2758–2769. doi:10.1007/s11356-015-5507-2

    Article  Google Scholar 

  • Misir V, Arya DS, Murumkar AR (2013) Impact of ENSO on River Flows in Guyana. Water Resour Manag 27:4611–4621. doi:10.1007/s11269-013-0430-0

    Article  Google Scholar 

  • Mohssen M, Edwards S, Walters AS, Alqassab A (2011) The impact of El Nino and La Nina weather patterns on Canterbury water resources. In: 19th international congress on modelling and simulation, Perth, Australia

  • Moore DS (1991) Statistics: concepts and controversies, 3rd edn. W.H. Freeman, New York, 439 p

    Google Scholar 

  • Mouser PJ, Rizzo DM, Röling WFM, van Breukelen BM (2005) A Multivariate Statistical Approach to Spatial Representation of Groundwater Contamination using Hydrochemistry and Microbial Community Profiles. Environ Sci Technol 39:7551–7559. doi:10.1021/es0502627

    Article  Google Scholar 

  • Najafi MR, Moradkhani H, Piechota TC (2012) Ensemble Streamflow Prediction: Climate signal weighting methods vs. Climate Forecast System Reanalysis. J Hydrol 442–443:105–116. doi:10.1016/j.jhydrol.2012.04.003

    Google Scholar 

  • Oguntunde PG, Friesen J, van de Giesen N, Savenije HHG (2006) Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys Chem Earth, Parts A/B/C 31:1180–1188. doi:10.1016/j.pce.2006.02.062

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90. doi:10.1016/j.atmosres.2013.10.024

    Article  Google Scholar 

  • Pombo S, de Oliveira RP (2015) Evaluation of extreme precipitation estimates from TRMM in Angola. J Hydrol 523:663–679. doi:10.1016/j.jhydrol.2015.02.014

    Article  Google Scholar 

  • Quadro MFL, Berbery EH, Silva Dias MAF et al (2013) The atmospheric water cycle over South America as seen in the new generation of global reanalyses. AIP Conf Proc 1531:732–735. doi:10.1063/1.4804874

    Article  Google Scholar 

  • Schaefer JA, Mayor SJ (2007) Geostatistics reveal the scale of habitat selection. Ecol Modell 209:401–406. doi:10.1016/j.ecolmodel.2007.06.009

    Article  Google Scholar 

  • Seaman RS (1983) Objective analysis accuracies of statistical interpolation and successive correction schemes. Aust Met Mag 31:225–240

    Google Scholar 

  • Shaw EM, Beven KJ, Chappel NA, Lamb R (2011) Hydrology in practice, 4th edn. Spon, London

    Google Scholar 

  • Shrivastava P, Swarup A (2001) Management of wastewater for environmental protection of freshwater resources: an approach for tropical countries both developing and undeveloped. In: International conference on freshwater, 3–7 December, Bonn

  • Sorooshian S, Hsu K-L, Gao X et al (2000) Evaluation of PERSIANN System Satellite–Based Estimates of Tropical Rainfall. Bull Am Meteorol Soc 81:2035–2046. doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2

    Article  Google Scholar 

  • Tveito OE, Wegehenkel M, van der Wel F, Dobesch H (2008) COST Action 719: the use of geographic information systems in climatology and meteorology. EUR-OP, Luxembourg

    Google Scholar 

  • Wang Y, Li C, Chen L, Zheng S (2008) Analysis on impact of weight to spatial interpolation methods. J Hunan Univ Sci Technol Nat Sci Ed 23:77–80

    Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, West Sussex, UK

    Book  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P et al (2011) Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. J Hydrometeorol 12:823–848. doi:10.1175/2011JHM1369.1

    Article  Google Scholar 

  • Wu W, Chen J, Huang R (2013) Water budgets of tropical cyclones: three case studies. Adv Atmos Sci 30:468–484. doi:10.1007/s00376-012-2050-7

    Article  Google Scholar 

  • Yang S-K, Kar KK, Lee J-H (2015) Surface rainfall-runoff analysis using NRCS curve number and semi-distributed model in urban watershed of Jeju Island, Korea. H43I1668. In: 2015 AGU fall meeting, San Francisco, California, USA. https://agu.confex.com/agu/fm15/webprogram/Paper59250.html. Accessed 22 May 2017

Download references

Acknowledgements

Authors are grateful to all anonymous reviewers for their meticulous comments which helped improving earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Kamble, T. & Machiwal, D. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environ Earth Sci 76, 512 (2017). https://doi.org/10.1007/s12665-017-6814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6814-3

Keywords

Navigation