Skip to main content

Advertisement

Log in

Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In salt marshes, the hydrodynamics and the availability of iron, organic matter and sulphate, influence the formation and/or dissolution of iron sulfides and iron oxyhydroxides. Therefore, they constitute key factors affecting the iron biogeochemical processes in these environments. The aim of this work is to evaluate the physico-chemical and mineralogical variations associated to iron biogeochemistry in palaeo and actual salt marshes in the area of influence of the Mar Chiquita coastal lagoon, Pampean Plain, Argentina. In soils of exhumed palaeo marshes, the iron contents are 56–95 μmol g−1, whereas these contents decrease to 36–75 μmol g−1 in actual marsh soils. The presence of framboidal and poliframboidal pyrites associated with gypsum, barite, calcite, halite and iron oxyhydroxides defines the conditions of the pedosedimentary sequences of the Holocene paleomarshes. Sequences of pyrite formation (sulfidization) and degradation (sulfuricization) were observed. These processes were evidenced by a sequential extraction, reflecting that the largest proportion of iron is in the form of crystalline iron oxides (28–76 %) and lepidocrocite (6–16 %); while the proportion associated with ferrihydrite and pyrite is low (0–9 and 1–17 %, respectively). These facts could be partly explained by the complex redox processes characteristic of these environments, such as aeration generated by the rhizosphere and intense bioturbation by invertebrates. These iron biomineralizations have been useful because they allow paleoenvironmental interpretations and characterization of paleomarshes, and environmental inferences related to the management of actual salt marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araújo JMC Jr, Otero XL, Marques AGB, Nóbrega GN, Silva JRF, Ferreira TO (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo Mar Lett 32(4):289–300

    Article  Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in modern ocean: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim et Cosmochim Acta 48:605–615

    Article  Google Scholar 

  • Bianchi TS (2006) Biogeochemistry of estuaries. Oxford University Press, Oxford

    Google Scholar 

  • Borrelli N, Osterrieth M, Marcovecchio J (2008) Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean Plain, Argentina. Catena 75(2):146–153

    Article  Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Article  Google Scholar 

  • Burgos JJ, Vidal AL (1951) Los climas de la República Argentina, según la nueva clasificación de Tornthwaite. Meteoros 1(1):3–32

    Google Scholar 

  • Buurman P (1998) Classification of paleosols—a comment. Quat Int 51/52(7/8):17–33

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  Google Scholar 

  • Fanning M, Rabenhorst M, Burch S, Islam K, Tangren S (2002) Sulfides and sulfates. In: Dixon and Schulze (eds). Soil mineralogy with enviromental application. SSSA Book Series 7 7: 229–261

  • Fasano JL, Hernández MA, Isla FI, Schnack EJ (1982) Aspectos evolutivos y ambientales de la Laguna Mar Chiquita (Provincia de Buenos Aires, Argentina). Oceanologica Acta, 285–292 (Special Publication)

  • Ferreira TO, Vidal-Torrado P, Otero XL, Macías F (2007) Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena 70:79–91

    Article  Google Scholar 

  • Ferreira TO, Otero XL, Souza VS Jr, Vidal-Torrado P, Macías F, Firme LP (2010) Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J Soils Sediments 10:995–1006

    Article  Google Scholar 

  • Ferreira TO, Nóbrega GN, Albuquerque AGBM, Sartor LR, Gomes IS, Artur AG, Otero XL (2015) Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil. GeoMar Lett 35:355–366

    Google Scholar 

  • Fortin D, Leppard GG, Tessier A (1993) Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochim Cosmochim Acta 57:4391–4404

    Article  Google Scholar 

  • Frenguelli J (1950) Rasgos generales de la morfología y la geología de la Provincia de Buenos Aires. Lemit 2(33):72

    Google Scholar 

  • Galehouse JS (1971) Sedimentation analysis. In: Carver (ed) Procedures in sedimentary petrology. Wiley Interscience, USA, pp 69–94

    Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13

    Article  Google Scholar 

  • Howarth RW (1984) The ecological significance of sulfur in the energy of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27

    Article  Google Scholar 

  • Huerta-Díaz MA, Morse JW (1990) A quantitative method for determination of trace metals in sedimentary pyrite. Mar Chem 29:119–144

    Article  Google Scholar 

  • Ingram RL (1971) Sieve analysis. In: Carver (ed) Procedures in sedimentary petrology. Wiley Interscience, USA, pp 41–68

    Google Scholar 

  • INTA (1987) Unidad de Recurso de Suelos: Mapa geomorfológico y de suelos de la Provincia de Buenos Aires. Escala 1:50.000. Castelar

  • Iribarne OO (ed) (2001) Reserva de Biosfera Mar Chiquita: Características físicas, biológicas y ecológicas. Ed Martín, Mar del Plata, Argentina

  • Iribarne OO, Bortolus A, Botto F (1997) Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145

    Article  Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient in the south-west Atlantic coast. J Biogeogr 3:888–900

    Article  Google Scholar 

  • Isla FI, Fasano JL, Ferrero L, Espinosa M, Schnack EJ (1988) Late Cuaternary marine-estuarine sequences of the Southeastern coast of Buenos Aires Province, Argentina. Quat S Am Ant Pen 6:137–157

    Google Scholar 

  • Koretsky CM, Miller D (2008) Seasonal influence of the needle rush Juncus roemerianus on saltmarsh porewater geochemistry. Estuaries Coast 31:70–84

    Article  Google Scholar 

  • Koretsky CM, Moore CM, Lowe KL, Meile C, Dichristina TJ, van Cappellen P (2003) Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochemistry 64:179–203

    Article  Google Scholar 

  • Kostka JE, Luther GW III (1994) Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim et Cosmochim Acta 58(7):1701–1710

    Article  Google Scholar 

  • Lovley DR (2000) Environmental microbe-mineral interactions. ASM Press, Washington

    Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  Google Scholar 

  • Luther GW III, Kostka JE, Church TM, Sulzberger B, Stumm W (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40:81–103

    Article  Google Scholar 

  • Marcovecchio J, Freije H, De Marco S, Gavio MA, Ferrer L, Andrade S, Beltrame O, Asteasuain R (2006) Seasonality of hydrographic variables in a coastal lagoon: Mar Chiquita, Argentina. Aquat Conserv Mar Freshw Ecosyst 16:335–347

    Article  Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42

    Article  Google Scholar 

  • Nóbrega GN, Ferreira TO, Romero RE, Marques AGB, Otero XL (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ Monit Assess 185(9):393–7407

    Article  Google Scholar 

  • Odum EP (1970) Fundamentals of ecology. Saunders, USA

    Google Scholar 

  • Olivier S, Escofet AM, Penchaszadeh P, Orenzanz JM (1972) Estudios ecológicos de la región estuarial de Mar Chiquita (Buenos Aires, Argentina). Las comunidades bentónicas. Anal Com Inv Cient 193(5–6):237–262

    Google Scholar 

  • Osterrieth M (1992) Pirita framboidal en secuencias sedimentarias del Holoceno tardío en Mar Chiquita, Buenos Aires, Argentina. In: IV Reunión Argentina de Sedimentología 2: 73–80

  • Osterrieth M (1998) Paleosols and their relation to sea level changes during the Late Quaternary in Mar Chiquita, Buenos Aires, Argentina. Quatern Int 51–52:43–44

    Article  Google Scholar 

  • Osterrieth M (2005) Biomineralizaciones de hierro y calcio, su rol en procesos biogeoquímicos de secuencias sedimentarias del sudeste bonaerense. In: XVI Congreso Geológico Argentino III: 255–262

  • Otero XL, Macias F (2003) Spatial variation in pyritization of trace metals in salt-marsh soils. Biogeochemistry 62:59–86

    Article  Google Scholar 

  • Otero XL, Ferreira TO, Vidal-Torrado P, Macías F (2006) Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia–Brazil). Appl Geochem 21:2171–2186

    Article  Google Scholar 

  • Otero XL, Ferreira TO, Huerta-Díaz MA, Partiti CSM, Souza V Jr, Vidal-Torrado P, Macías F (2009) Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia–SP, Brazil). Geoderma 148:318–335

    Article  Google Scholar 

  • Polastro RM (1981) Authigenic kaolinite and associated pyrite in chalk of the Creaceous Niobrara formation, eastern Colorado. J Sed Petrol 5(1,2):553–562

    Google Scholar 

  • Pons LJ (1965) A quantitative microscopical method of pyrite determination in soils. In: Jorgerius A (ed) Proc Microm Symp 401–409

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724

    Article  Google Scholar 

  • Roychoudhury A, Kostka J, Van Cappellen P (2003) Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuar Coast Shelf Sci 57:1183–1193

    Article  Google Scholar 

  • Schnack EJ, Gardenal M (1979) Holocene transgressive deposits, Mar Chiquita lagoon coast, Buenos Aires province, Argentina. Proc Int Symp Coast Evol Quat, Sao Paulo, pp 419–425

    Google Scholar 

  • Simonson RW (1959) Outline of a generalizade theoryof soil genesis. Soil Sci Soc Am Proc 23:152–156

    Article  Google Scholar 

  • Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. United States Department of Agriculture, Washington

    Google Scholar 

  • Spivak E, Luppi T, Bas C (2001) Cangrejos y camarones: las relaciones organismo-ambiente en las distintas fases del ciclo de vida. In: Iribarne O (ed) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, Ed Martin, Mar del Plata, Argentina, pp 129–152

  • Stribling J (1997) The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquat Bot 56:131–143

    Article  Google Scholar 

  • Taillefert M, Neubhuber S, Bristow G (2007) The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochem Trans 8:6

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisso M (1979) Sequencial extraction procedure for the speciation of particulate trace metals. Anal Chem 5:844–855

    Article  Google Scholar 

  • Tobias C, Neubauer SC (2009) Salt marsh biogeochemistry—an overview. In: Perillo GME, Wolansky E, Cahoon DR, Brinson MM (eds) Coastal wetlands. An integrated ecosystem approach, Elsevier, Amsterdam, The Netherlands, pp 445–492

  • Tricart JL (1973) Geomorfología de la Pampa Deprimida. INTA 12:202

    Google Scholar 

  • Vervoorst F (1967) La vegetación de la República Argentina Vll. Las comunidades vegetales de la depresión del Salado (Pcia de BsAs). INTA Serie Fitogeográfica 7:24

    Google Scholar 

  • Viaroli P, Laserre P, Campostrini P (2007) Lagoons and coastal wetlands. Hidrobiología 577:1–3

    Article  Google Scholar 

  • Violante RA, Parker G, Cavallotto JL (2001) Evolución de las llanuras costeras del este bonaerense entre la bahía Samborombón y la laguna Mar Chiquita durante el Holoceno. Revista de la Asociación Geológica Argentina 56:51–66

    Google Scholar 

  • Walkley Black (1965). In: Black C (ed) Methods of Soil Analysis. American Society of Agronomy, pp 1372–1375

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim et Cosmochim Acta 60(20):3897–3912

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Mar del Plata National University (EXA 741/15), National Agency for Science and Technology Promotion (ANPCyT, BID PICT No 1583), CONICET (PIP 112-20130100145CO) and MINCyT-CAPES (BR/09/13, BR/RED/14/14). The authors thank to Ing. José Vila for their assistance with SEM and EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Borrelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osterrieth, M., Borrelli, N., Alvarez, M.F. et al. Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environ Earth Sci 75, 672 (2016). https://doi.org/10.1007/s12665-016-5506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5506-8

Keywords

Navigation