Skip to main content
Log in

Cr and Zn biosorption by Aspergillus niger

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The dead biomass of Aspergillus niger was studied as biosorbent for removing Zn(II) and Cr(VI) from wastewater. The surface characteristics of the biomass were evaluated based on the point of zero charge (PZC), identification of adsorption sites and structure by scanning electron microscopy. The adsorption capacity was determined by kinetic studies and adsorption equilibrium. The results showed that the PZC is between pH 4.4 and 4.6. At pH values below the PZC, the adsorption of anions occurs by electrostatic attraction. For pH values above the PZC, the surface is negatively charged, and cations are removed. The adsorption of metals by the dead biomass fits the pseudo-first and pseudo-second-order models. Moreover, the equilibrium followed the Langmuir and Freundlich models when the adsorbate concentrations were lower than 50 mg/L, whereas it followed only the Freundlich model at concentrations above 50 mg/L. The biosorption process was characterized by the prevalence of chemical forced between the functional groups present on the biomass surface and the metallic ions. Adsorption capacities of Zn(II) and Cr(VI) were 3.833 and 4.997 mg/L, respectively. Therefore, the biomass of A. niger shows potential application as a biosorbent in the removal of these metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aftab K, Akhtar K, Jabber A, Bukhari II, Noreen R (2013) Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent. Water Res 47:4238–4246

    Article  Google Scholar 

  • Agrawal A, Sahu KK, Pandey BD (2004) Removal of zinc from aqueous solutions using sea nodule residue. Colloids Surf A Physicochem Eng Asp 237:133–140

    Article  Google Scholar 

  • Akar ST, Gorgulo A, Anilan B, Kayanak Z, Akar T (2009) Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albums: batch and dynamic flow studies. J Hazard Mater 165:126–133

    Article  Google Scholar 

  • Akar ST, Aslan S, Alp T, Aslan D, Akar T (2012) Biosorption potential of the waste biomaterial obtained from Cucumis melo for removal for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis. Chem Eng J 185–186:82–90

    Article  Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7:57–62

    Article  Google Scholar 

  • Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater 154(1–3):694–702

    Article  Google Scholar 

  • Amini M, Younesi H, Bahramifar N (2009) Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere 75:1483–1491

    Article  Google Scholar 

  • Arunakumara KKIU, Xuecheng Z (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7(1):60–64

    Article  Google Scholar 

  • Ayranci E, Hoda N (2005) Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60:1600–1607

    Article  Google Scholar 

  • Bai RS, Abraham TE (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236

    Article  Google Scholar 

  • Bayramoglu G, Arica MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140

    Article  Google Scholar 

  • Bayramoglu G, Gursel I, Tunali Y, Arica MY (2009) Biosorption of phenol and 2-chlorophenol by funalia trogii pellets. Bioresour Technol 100:2685–2691

    Article  Google Scholar 

  • Bingol A, Aslan BA, Cakicia A (2009) Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia angiformis (L.)). J Hazard Mater 161:747–752

    Article  Google Scholar 

  • Borràs E, Blánquez P, Sarrà M, Caminal G, Vicent T (2008) Trametes versicolor pellets production: low-cost medium and scale-up. Biochem Eng J42(1):61–66

    Article  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28:799–808

    Article  Google Scholar 

  • Carrott PJM, Carrott RMML, Nabais JMV, Ramalho PJP (1996) Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons. Carbon 35(3):403–410

    Article  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Xu Y, Chen YXD (2005) Biosorption of copper(II) and zinc(II) from aqueous Polution by Pseudomonas putida Z1. Colloids Surf B Interfaces 46(2):101–107

    Article  Google Scholar 

  • Chowdhury ZZ, Zain SM, Khan RA, Ahmed AA (2011) Equilibrium kinetics and isotherm studies of Cu (II) adsorption from waste water onto alkali activated oil palm ash. Am J Appl Sci 8(3):230–237

    Article  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  Google Scholar 

  • Cooney DO (1999) Adsorption design for wastewater treatment. CRC Press, Boca Raton

    Google Scholar 

  • Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol 99:4515–4519

    Article  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  Google Scholar 

  • Deepa KK, Sathishkumar M, Binupriya AR, Murugesan GS, Swaminathan K, Yun SE (2006) Sorption of Cr(VI) from dilute solutions and wastewater by live pretreated biomass of Aspergillus flavous. Chemosphere 62:833–840

    Article  Google Scholar 

  • Dudley HW, Fleming I (1995) Spectroscopic methods in organic chemistry. Mc Graw-Hill, London

    Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater. American Public Health Association—APHA, Washington, D.C

    Google Scholar 

  • Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X (2008) Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J Hazard Mater 160:655–661

    Article  Google Scholar 

  • Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–67

    Article  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82(2):139–145

    Article  Google Scholar 

  • Ghaedi M, Hajati S, Karimi F, Barazesh B, Ghezelbash G (2013) Equilibrium, kinetic and isotherm of some metal ion biosorption. J Ind Eng Chem 19:987–992

    Article  Google Scholar 

  • Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I: theoretical. J Colloids Interface Sci 47:755–765

    Article  Google Scholar 

  • Gupta S, Babu BV (2009) Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinects and regeneration studies. Chem Eng J 150:352–365

    Article  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78(8):967–973

    Google Scholar 

  • Hajahmadi Z, Younesi H, Bahramifar N, Khakpour H, Pirzadeh K (2015) Multicomponent isotherm for biosorption od Zn(II), Co(II) and Cd(II) from ternary mixture onto pretreat dried Aspergillus niger biomass. Water Resour Ind 11:71–80

    Article  Google Scholar 

  • Hameed BH, Ahmad AA, Aziz N (2007) Isotherms, kinetic and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133:195–203

    Article  Google Scholar 

  • Hawari A, Rawajfih Z, Nsour N (2009) Equilibrium and thermodynamic analysis of zinc ions adsorption by olive mill solid residues. J Hazard Mater 168:1284–1289

    Article  Google Scholar 

  • Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Plerotus ostreatus. Biomass Bioenergy 35:1675–1682

    Article  Google Scholar 

  • Kapoor A, Yang RT (1989) Correlation of equilibrium adsorption data of condensable vapours on porous adsorbents. Gas Sep Purif 3:187–192

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater 124(1–3):192–199

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145:489–495

    Article  Google Scholar 

  • Kumar R, Bishnoi NR, Garima BK (2008) Biosorption of Chromium (VI) from aqueous solutions and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208

    Article  Google Scholar 

  • Lameiras S, Quintelas C, Tavares T (2008) Biosorption of Cr(VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour Technol 99:801–806

    Article  Google Scholar 

  • Lee Y, Chang S (2011) Biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102:5297–5304

    Article  Google Scholar 

  • Liao W, Liu Y, Frear C, Chen S (2007) A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. Bioresour Technol 98:3415–3423

    Article  Google Scholar 

  • Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem Eng J 38:390–394

    Article  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135(1–3):280–295

    Article  Google Scholar 

  • Moreira MT, Sanromain A, Feijo G, Lema JM (1996) Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow: application to Aspergillus niger and Phanerochaete chrysosporium. Enzyme Microbiol Technol 19(4):261–266

    Article  Google Scholar 

  • Mukhopadhya YM (2008) Role of surface properties during biosorption of copperby pretreated Aspergillus niger biomass. Colloids Surf A Physicochem Eng Asp 329:95–99

    Article  Google Scholar 

  • Mungasavalli DP, Viraraghavan T, Jin YC (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids Surf A Physicochem Eng Asp 301:214–222

    Article  Google Scholar 

  • Mutongo F, Kuipa O, Kuipa PK (2014) Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinorg Chem Appl 2014:1–7. doi:10.1155/2014/973153

    Article  Google Scholar 

  • Nagda GK, Ghole VS, Diwan AM (2006) Tendu leaves refuse as a biosorbent for COD removal from Molasses Fermentation based Bulk drug industry effluent. J Appl Sci Environ Manag 10(3):15–20

    Google Scholar 

  • Ncibi MC (2008) Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J Hazard Mater 153:207–212

    Article  Google Scholar 

  • Nilanjana D, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    Google Scholar 

  • Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee huusks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152:1073–1081

    Article  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Veglio F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633

    Article  Google Scholar 

  • Pandey PK, Verma Y, Choubey S, Pandey M, Chandrasekhar K (2008) Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresour Technol 99(10):4420–4427

    Article  Google Scholar 

  • Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  Google Scholar 

  • Park D, Yun YS, Park JM (2005) Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356–1364

    Article  Google Scholar 

  • Ramrakhiani L, Majumder R, Khowala S (2011) Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: surface characterization and mechanism of biosorption. Chem Eng J 171:1060–1068

    Article  Google Scholar 

  • Rangabhashiyam S, Selvaraju N (2015) Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J Taiwan Inst Chem Eng 47:59–70

    Article  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption process. Wiley, New York

    Google Scholar 

  • Sag Y, Kaya A, Kutsal T (1998) The simultaneous biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 50:297–314

    Article  Google Scholar 

  • Sanghi R, Sankararamakrishnan N, Dave BC (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1080

    Article  Google Scholar 

  • Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164(2–3):1004–1011

    Article  Google Scholar 

  • Saygideger S, Gulnaz O, Istifli ES, Yucel N (2005) Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. J Hazard Mater B 126:96–104

    Article  Google Scholar 

  • Shek TH, Ma A, Lee VKC, Mckay G (2009) Kinetics of zinc ions removal from effluents using ion exchange resin. Chem Eng J 146:63–70

    Article  Google Scholar 

  • Sousa FW (2007) Adsorção de metais tóxicos em efluente aquoso usando a casca de coco verde tratado. Dissertação de Mestrado em Engenharia Civil—área de concentração em Saneamento Ambiental. Universidade Federal do Ceará, Fortaleza

  • Sun XF, Wang SG, Zhang XM, Chen PJ, Li XM, Gao BY, Ma Y (2009) Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. J Colloid Interface Sci 335:11–17

    Article  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    Google Scholar 

  • Váldes H, Sánchez-Polo M, Rivera-Utrilla J (2002) Effect of ozone treatment on surface properties of activated carbon. Langmuir 18:2111–2116

    Article  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal biosorption: a review. Hydrometallurgy 44:301–316

    Article  Google Scholar 

  • Vilar VJ, Botelho CMS, Boaventura RAR (2007) Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium. J Hazard Mater 149:643–649

    Article  Google Scholar 

  • Wang XS, Qin Y (2006) Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomas. J Hazard Mater B 138:582–588

    Article  Google Scholar 

  • Wang J, Hua X, Liu Y, Xie S, Bao Z (2010) Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 1001:504–508

    Article  Google Scholar 

  • WHO (1998) Environmental health criteria 61: chromium. http://www.inchem.org/documents/ehc/ehc/ehc61.htm

  • Ye J, Yin H, Mai B, Hui P, Qin H, He B, Zhang N (2010) Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica ans dewatered sewage sludge. Bioresour Technol 101:3893–3902

    Article  Google Scholar 

  • Yun-Guo L, Ting F, Guan-Ming Z, Xin L, Quing T, Fei Y, Ming Z, Wei-Hua X, Yu H (2006) Removal of cadmium and zinc ions from aqueous solutions by living Aspergillus niger. Trans Nonferr Metals Soc China 16:681–686

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Improvement Coordination of Higher Education Personal and National Council of Technological and Scientific Development Universal Edict proc. 470628/2006-5 for partial financial support to realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Socorro Vale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vale, M.d., do Nascimento, R.F., Leitão, R.C. et al. Cr and Zn biosorption by Aspergillus niger . Environ Earth Sci 75, 462 (2016). https://doi.org/10.1007/s12665-016-5343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5343-9

Keywords

Navigation