Skip to main content
Log in

Reliable neuro self-tuning control using autoassociative neural networks for the water treatment

Zuverlässige neurale selbstabgleichende Steuerung unter Verwendung autoassoziativer neuraler Netzwerke für die Wasseraufbereitung

  • Reviewed Original Papers
  • Published:
e&i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

This paper extends the results of the research presented recently in Vienna and incorporates an algorithm to obtain very precise control of the addition of the coagulation chemical by developing a neuro self-tuning policy for automatically adjusting the parameters of a conventional PI controller.

Zusammenfassung

Dieser Beitrag verweist auf die unlängst in Wien vorgelegten Forschungsergebnisse und enthält einen Algorithmus zur sehr genauen Steuerung von chemikalischen Zusätzen durch die Entwicklung eines neuralen selbstabgleichenden Verfahrens für das automatische Einstellen der Parameter eines konventionellen PI-Kontrollers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behera, L., et al.: Inversion of RBF networks and applications to adaptive control of nonlinear systems. IEE Proceedings in Control Theory and Application 142 (1995), No. 6, pp. 617–624.

    Article  MATH  Google Scholar 

  2. Böhme, T. J., et al.: Performance assessment of a neuro self-tuning PI controller to be used at a water treatment plant. Submitted and accepted for American Control Conference ’99 (1999).

  3. Böhme, T. J., et al.: Sensor failure and signal reconstruction using auto-associative neural networks. Proc. ICSC/IFAC Symposium on Neural Computation (1998), pp. 220–225.

  4. Böhme, T. J.: Stability issues for neural self-tuning control. Internal Report, University of Sunderland, School of Computing, Engineering and Technology, Control Systems Centre. 1999.

  5. Chow, E. Y., Willsky, A. S.: Analytical redundancy and the design of robust failure detection system. IEEE Trans. on Automatic Control AC-29 (1984), No. 7, pp. 603–614.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, S. R., et al.: Neural networks for system identification. IEEE Control System Magazine (1990), pp. 31–35.

  7. Cooper, D. J., et al.: Comparing two neural networks for pattern based adaptive process control. AIChE Journal 38 (1992), No. 1, pp. 41–55.

    Article  Google Scholar 

  8. Dong, D., McAvoy, T. J.: Multi-stage batch process monitoring. Proc. American Control Conference (1995), pp. 1857–1861.

  9. Dunia, R., et al.: Use of principal component analysis for sensor fault identification. Computers and Chemical Engineering 20 (1996), pp. 713–718.

    Article  Google Scholar 

  10. Freeman, J. A., Skapura, D. M.: Neural networks: algorithm, applications and programming techniques. Reading: Addison-Wesley, 1991.

    Google Scholar 

  11. Gue, T.-H., Nurre, J.: Sensor failure detection and recovery by neural networks. IEEE (1991), pp. 221–226.

  12. Gue, T.-H., Musgrave, J.: Neural network based sensor validation for reusable rocket engines. Proc. of the American Control Conference (1995), pp. 1367–1372.

  13. Guez, A., et al.: Neural network architecture for control. IEEE Control System Magazine (1988), pp. 22–25.

  14. Hastie, T., Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84 (1989), No. 406, pp. 502–516.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hertz, J., et al.: Introduction to the theory of neural computation, pp. 198. Redwood City, CA: Addison-Wesley, 1991.

    Google Scholar 

  16. Kramer, M. A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37 (1991), No. 2, pp. 233–243.

    Article  Google Scholar 

  17. Kurtanjek, Z.: Singular value and principal component decomposition for process data modelling. Automatika 36 (1995), No. 3, pp. 109–112.

    Google Scholar 

  18. Lee, J. W., Oh, J. H.: Inversion control of nonlinear systems with neural network modelling. IEE Proceedings in control Theory and Application 144 (1997), No. 5, pp. 481–486.

    Article  MATH  Google Scholar 

  19. Lightbody, G., Irwin, G. W.: Direct neural model reference adaptive control. IEE Proc.-Control Theory Appl. 142 (1995), No. 1, pp. 31–43.

    Article  MATH  Google Scholar 

  20. Lu, Y. Z.: Industrial intelligent control. New York: John Wiley. 1996.

    MATH  Google Scholar 

  21. Mac Gregor, J. F.: Statistical process control of multivariate processes. IFAC/ADCHEM — Advanced Control of Chemical Processes (1994).

  22. Nguyen, D., Widrow, B.: The track backer-upper: An example of self-learning in neural networks. Proc. of the international joint conference on Neural Networks 2 (1989), pp. 11357–11363.

    Google Scholar 

  23. Omatu, S., Yoshioka, M.: Neuro-approach for intelligent systems development. IEEE International Conference on Neural Networks — Conference Proceedings 4 (1997), pp. 2418–2423.

    Google Scholar 

  24. Reddy, V. N., Mavrovouniotis, M. L.: Plant monitoring and diagnosis using input-training neural networks. Proc. of the American Power Conference 1 (1996), pp. 309–314.

    Google Scholar 

  25. Tan, S., Mavrovouniotis, M. L.: Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 41 (1995), No. 6, pp. 1471–1481.

    Article  Google Scholar 

  26. Tanomaru, J., et al.: Process control by on-line trained neural controllers. IEEE Transaction on Industrial Electronics 39 (1992), No. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhme, T.J., Fletcher, I. & Cox, C.S. Reliable neuro self-tuning control using autoassociative neural networks for the water treatment. Elektrotech. Inftech. 116, 375–389 (1999). https://doi.org/10.1007/BF03159199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159199

Keywords

Schlüsselwörter

Navigation